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Abstract

Several classes of applications with abundant fine-grain parallelism, such as media

and signal processing, graphics, and scientific computing, have become increasingly

dominant consumers of computing resources. Prior research has shown that stream

processors provide an energy-efficient, programmable approach to achieving high per-

formance for these applications. However, given the strong compute capabilities of

these processors, efficient utilization of bandwidth, particularly when accessing off-

chip memory, is crucial to sustaining high performance.

This thesis explores tradeoffs in, and techniques for, improving the efficiency of

memory and bandwidth hierarchy utilization in stream processors. We first evaluate

the appropriate granularity for expressing data-level parallelism - entire records or

individual words - and show that record-granularity expression of parallelism leads to

reduced intermediate state storage requirements and higher sustained bandwidths in

modern memory systems. We also explore the effectiveness of software- and hardware-

managed memories, and identify the relative merits of each type of memory within the

context of stream computing. Software-managed memories are shown to efficiently

support coarse-grain and producer-consumer data reuse, while hardware-managed

memories are shown to effectively capture fine-grain and irregular temporal reuse.

We introduce three new techniques for improving the efficiency of off-chip mem-

ory bandwidth utilization. First, we propose a stream register file architecture that

enables indexed, arbitrary access patterns, allowing a wider range of data reuse to
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be captured in on-chip, software-managed memory compared to current stream pro-

cessors. We then introduce epoch-based cache invalidation - a technique that ac-

tively identifies and invalidates dead data - to improve the performance of hardware-

managed caches for stream computing. Finally, we propose a hybrid bandwidth hi-

erarchy that incorporates both hardware- and software-managed memory, and allows

dynamic reallocation of capacity between these two types of memories to better cater

to application requirements. Our analyses and evaluations show that these techniques

not only provide performance improvements for existing streaming applications but

also broaden the capabilities of stream processors, enabling new classes of applications

to be executed efficiently.
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Chapter 1

Introduction

Recent application trends have made media processing, signal processing, and graph-

ics some of the most important applications across a broad range of computing plat-

forms from desktop to mobile devices. At the same time, demands on high perfor-

mance computing systems continue to grow as scientific applications in fields such

as biotechnology and climate modeling attempt to simulate larger-scale phenomena

for longer periods with increasing precision. A characteristic common to both these

application classes, as well as several other important ones such as network processing

and encryption, is the presence of data parallelism which enables the computation on

many data elements to take place simultaneously.

The parallelism available in these applications provide an excellent match to the

characteristics of modern VLSI implementation technology. The very large number

of devices available on a single chip today enables many arithmetic units to be inte-

grated on to a single processor, allowing several computations to proceed in parallel.

However, bandwidth for providing operands for these computations must be man-

aged carefully. While very high bandwidths can be sustained on-chip, only a small

fraction of that potential bandwidth can be supplied from off-chip memory due to

pin bandwidth limitations. Therefore, it is important to capture as much data reuse,

or locality, available in applications in on-chip memory. Stream programming ex-

presses data parallel applications in a manner that exposes the available parallelism

and locality. Stream processor architectures exploit the parallelism and locality ex-

posed by the programming model to achieve high performance and energy efficiency.

1
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Stream processing has been demonstrated to be effective for both media and scientific

applications [RDK+98; DHE+03].

Stream processors implement a bandwidth hierarchy made up of registers and

memory to sustain high operand bandwidth to arithmetic units. The registers closest

to the arithmetic units provide the operands, and each successively further level of the

hierarchy sustains decreasing bandwidth, matching the available off-chip bandwidth

at the final level. Therefore, designing the bandwidth hierarchy in a manner that

enables capturing the locality available in a broad range of data access patterns at

levels close to the arithmetic units is critical for efficiently supporting a wide range

of data parallel applications.

This thesis focuses on techniques for improving the efficiency of off-chip bandwidth

utilization by capturing a broad range of locality on-chip, and by reducing non-

essential off-chip traffic. We present a novel architecture for stream register files

(SRF) that supports a wider range of access patterns than current stream processors

through the use of explicitly indexed accesses. The SRF is a key component in the

bandwidth hierarchy of a stream processor, and the additional flexibility afforded by

indexed accesses enables more of the locality available in applications to be captured

on-chip. We also compare the specialized bandwidth hierarchies of stream processors,

which rely on software-managed memories, with the hardware-managed caches of

general-purpose processors. We highlight the relative strengths of these two types of

memories, and identify optimizations necessary in caches to better support streaming

applications. Hybrid bandwidth hierarchies that incorporate characteristics of both

stream register files and cache memories are also explored, and an organization that

enables the mix of stream and cache memory capacity to be tailored to suit application

characteristics is presented.

We also explore the efficiency of stream processing in terms of register require-

ments, and DRAM and cache bandwidth utilization. These studies show that the or-

dering of computation and memory accesses in stream processing lead to lower register

requirements and provide a better match to modern memory hierarchy characteristics

relative to other mainstream, programmable data parallel execution models.
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1.1 Research Contributions

The main contributions of this thesis to the field of computer architecture and stream

processing are:

1. An analysis of the register capacity requirements of stream processing compared

to other widely used, programmable data parallel processing techniques. This

analysis demonstrates the reduced register capacity requirements that arise from

structuring the parallel computation at the granularity of operations on entire

data records, as is done in stream processing, compared to alternative techniques

that express parallelism at a granularity smaller than entire records.

2. An evaluation of cache and DRAM performance of stream processing compared

to other widely used, programmable data parallel processing techniques. This

evaluation shows that stream processing, by exposing the record-granularity

locality present in applications to the hardware, improves utilization in modern

DRAM-based memory hierarchies, thereby achieving higher performance for

bandwidth-constrained applications.

3. A novel architecture for stream register files that supports flexible access pat-

terns through explicit indexing. This design enables a more complete communi-

cation hierarchy within the bandwidth hierarchy of stream processors, enabling

a broader range of data reuse to be captured at the stream register file level.

This directly results in reduced demands on scarce off-chip memory bandwidth

for a variety of application classes. A microarchitecture for a low-area-overhead

implementation of the proposed design is also presented.

4. An evaluation of software- and hardware-managed on-chip memories for stream

computing, which provides insights on the key benefits and sources of inefficien-

cies in each of these two types of memories. Hardware-managed (cache) mem-

ories benefit from fine-grain memory management implemented in hardware,

but suffer due to inefficiencies in replacement policies, name translation, and

bandwidth limitations. Software-managed memories suffer due to coarse-grain

memory management in software, but benefit from application-aware manage-

ment policies and greater flexibility in name translation. This evaluation also
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establishes design requirements for hardware-managed (cache) memories when

used in the context of a streaming bandwidth hierarchy.

5. Epoch-based cache invalidation, a novel technique for improving hardware-

managed memory performance for stream computing based on identifying and

actively invalidating cached state that is no longer live. This enables cache lines

with dead data to be evicted without generating memory writes even if the lines

are marked as dirty in the cache, resulting in reduced memory traffic.

6. A microarchitecture for a hybrid memory that supports both software and

hardware management while preserving the key requirements of each type of

memory for stream computing. The proposed structure allows the available

capacity to be dynamically allocated between hardware- and software-managed

memories based on application requirements identified at compile-time. Evalu-

ations of this memory demonstrate that no single allocation of capacity between

hardware- and software-managed memory is optimal over different applications,

and customizing the allocation on a per-application basis leads to improved per-

formance, particularly as off-chip bandwidth becomes increasingly scarce.

1.2 Thesis Roadmap

Chapter 2 provides an overview of background material including a brief introduction

to stream programming, stream processor architecture, and alternative data parallel

architectures.

Chapter 3 evaluates the impact that the granularity at which data parallelism is

exploited at - operations on individual words or entire records - has on intermediate

state storage requirements and off-chip memory system performance. This distinc-

tion in granularity correlates closely to a key difference between vector and stream

processing - two common execution models used in a number of recent programmable

data parallel architectures.

Chapter 4 explores the spatial and temporal communication requirements of data

parallel applications, and the importance of a communication hierarchy in enabling

the bandwidth hierarchy to efficiently capture a broad range of application data reuse
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patterns. Chapter 4 also introduces and evaluates a novel stream register file archi-

tecture that efficiently supports significantly more communication freedom compared

to prior designs. This added flexibility enables efficient support for a wider range of

access patterns, improving the performance of several classes of applications both in

terms of execution time and off-chip bandwidth requirements.

While on-chip memories of traditional data parallel architectures have often been

software-managed, using hardware managed memories for data parallel computing

is becoming increasingly important due to a number of recent trends. Chapter 5

addresses these trends and studies the tradeoffs in software and hardware manage-

ment of on-chip memory for data parallel computing. We characterize application

data access patterns, and correlate these to memory system performance in order to

identify the types of accesses that benefit from each type of memory. This study

also highlights the sources of performance loss in hardware- and software-managed

memories, and establishes a set of requirements for each type of memory for sustain-

ing high performance for the application classes studied. Chapter 5 also introduces

epoch-based cache invalidation, a technique to improve the performance of hardware

managed memories by identifying and explicitly invalidating dead data in the cache.

Chapter 6 introduces and evaluates a hybrid memory architecture that supports

both software and hardware management while retaining the desirable characteristics

of each type of memory identified in chapter 5. This design allows the available on-chip

memory capacity to be dynamically allocated between software and hardware man-

agement, enabling the memory hierarchy to be better tailored to each application’s

access characteristics. The microarchitecture proposed for this design is a logical ex-

tension of the stream register file architecture introduced in chapter 4, enabling a low

overhead implementation in the context of stream processing.

Finally, chapter 7 presents conclusions and discusses future research directions.



Chapter 2

Background and Motivation

Today’s VLSI circuit technology enables billions of transistors to be integrated on a

single chip. Therefore, the potential exists for thousands of arithmetic units to be

incorporated on a single processor to achieve very high performance. However, in

order to realize this potential, two technology constraints must be overcome. First,

the long latency of memory accesses, which can be hundreds to thousands of cycles for

an off-chip access in modern high performance processors, must be tolerated. Second,

off-chip memory bandwidth, which is significantly lower than that available to on-chip

memory structures, must not become a performance bottleneck.

Traditional general-purpose processors rely on instruction-level parallelism (ILP)

to achieve high performance across a broad range of applications. However, extracting

ILP from instruction sequences at compile-time is hindered by the lack of run-time

information, and doing so at run-time requires complex and expensive hardware struc-

tures. Therefore, resources of processors designed for ILP are allocated to anticipate a

relatively small amount of simultaneous computation. Significantly greater resources

are spent on discovering the parallelism and on cache hierarchies designed to reduce

the average latency of memory accesses. As a result, only a small fraction of the raw

capability of the underlying implementation technology is realized in terms of true

computational performance in such architectures.

Several important application classes exhibit data parallelism where computation

can be applied to a large number of data items simultaneously. Unlike ILP, data par-

allelism can often be analyzed and scheduled at compile-time, eliminating the need

6
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for expensive hardware techniques to dynamically discover parallelism. Application

classes with large amounts of data parallelism include media and signal processing,

where long sequences of samples are operated on, and scientific applications where

the behavior of physical systems are approximated by modeling a large number of

small segments of the overall system. These application classes are also some of the

most demanding consumers of compute cycles. It is widely accepted that media ap-

plications will continue to consume an increasingly greater fractions of the computing

capability on personal computing devices [DD97]. At the same time, scientific com-

puting applications often drive the requirements for high-end supercomputer designs.

The parallelism available in these applications can be exploited by processor archi-

tectures specialized for extracting data parallelism to sustain very high performance,

realizing a greater fraction of the capabilities enabled by implementation technology.

2.1 Exploiting Data Parallelism

The presence of data parallelism in an application provides two important opportu-

nities to achieve high performance – the parallelism itself, and latency tolerance. It is

important to note that the memory hierarchy design plays a critical role in enabling

both these opportunities.

First, computation on large numbers of data elements can proceed in parallel,

increasing the compute rate. This is further facilitated by the fact that operations

on one data element are largely independent of operations on other data elements in

most media and scientific applications. However, the levels of the memory hierarchy

closest to the arithmetic units (usually the register files) must be designed to provide

sufficient operand bandwidth to sustain the parallel computation. Furthermore, the

overall compute rate is ultimately limited by the rate at which application inputs and

outputs can be read or written from off-chip memory through any intermediate stages

of the memory hierarchy. Therefore, efficient utilization of the bandwidth available

at all levels, especially off-chip memory, is crucial for sustaining high performance.

Second, the available parallelism allows long memory latencies to be tolerated.

Unlike ILP processors, whose ability to continue beyond a long latency memory oper-

ation is limited by available ILP and the sizes of the issue window and commit queue,
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a data parallel architecture can continue to operate on the many other independent

data elements available. However, the memory hierarchy must be designed to support

continued execution while the long latency accesses are outstanding. While some de-

gree of such support is found in most modern high-performance memory systems in

the form of non-blocking caches with multiple outstanding misses, the requirements

are more stringent for data parallel architectures. The cost of a memory stall in terms

of wasted instruction issue slots is extremely high in data parallel architectures due

to the highly-parallel execution capabilities. In order to minimize the probability of

memory stalls, the number of concurrently outstanding memory accesses that must

be supported by data parallel architectures to the ith level of the memory hierarchy

is given by Little’s Law as expressed by equation (2.1), where Ai, BWi, and Li are

the outstanding accesses, bandwidth, and latency for the ith level of the memory

hierarchy. In modern systems where off-chip memory accesses take several hundred

cycles to complete, this requires the memory system to support thousands of in-flight

accesses.

Ai = BWi × Li (2.1)

The latency tolerance of data parallel applications shifts the focus of memory

hierarchy design of architectures targeted at these applications from reducing average

latency (which is the critical concern in general-purpose CPUs) to achieving high

bandwidth. The ability to sustain many in-flight memory operations is crucial from

this perspective as well, since it allows the entire memory pipeline to be filled, enabling

a high fraction of the peak memory bandwidth to be sustained.

The techniques presented in this thesis build on these capabilities enabled by data

parallelism in order to further improve off-chip memory bandwidth utilization for a

variety of application classes.

2.2 Stream Programming

The stream programming model can be used to express data parallel applications

in a manner that exposes the available locality and parallelism. In this model, an
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application is composed of a collection of data streams passing through a series of

computation kernels. Each stream is a sequence of homogeneous data records. Each

kernel is a loop body that is applied to each record of the input stream(s). A trivial

example is a kernel that computes the square of the distance between two points

in 2D space and is shown in figure 2.1. The compute kernel is represented by the

oval and streams are represented by the arrows in the figure. The kernel takes two

input streams, each a sequence of 2D coordinates, and outputs a single stream, the

squared distances between each pair of input coordinates. In general, kernels may

have zero or more input streams and one or more output streams. Kernels that

perform reductions may generate scalar outputs instead of, or in addition to, output

streams. The computation performed within the kernel loop bodies may be arbitrarily

complex.

DistSq

C1

C2

Result

Kernel DistSq(istream<coord> in1, istream<coord> in2, 
ostream<float> out) {

float tempX, tempY, d_sq;
while(!in1.end()) {

in1 >> a;
in2 >> b;
tempX = a.X – b.X;
tempY = a.Y – b.Y;
d_sq = (tempX * tempX) + (tempY + tempY);
out << d_sq;

}
}

struct coord {
float X, Y;

}

stream<coord> C1, C2;

stream<float> Result;

Figure 2.1: Simple kernel computing the squares of the distances between two se-
quences of coordinates

A more complex example – a simplified portion of a finite element method (FEM)

expressed as a stream program – is shown in figure 2.2. The first kernel in this

example (K1 ) receives an input stream of grid cells and generates a stream of indices
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in to an array of flux values stored in memory. These indices are used to lookup a

sequence of flux values that form the input stream to kernel K2. K2 and subsequent

kernels all produce output streams that are fed to later kernels as inputs, until the

final kernel (K4 ) produces the application’s outputs.

K4K3K2K1Cells

Fluxes

Updates
s0

s1 s2

s3

s4 s5

Figure 2.2: Stream representation of simplified finite element method

Locality

This stream representation allows the programmer to express multiple levels of locality

[RDK+98] that can be captured at various levels of the bandwidth hierarchy. Kernel

locality is exploited by keeping all intermediate values generated during a kernel’s

execution in registers without writing them to higher levels of the memory hierarchy.

Only the input and output streams of a kernel are read from or written to the memory

hierarchy. Producer-consumer locality is exposed by forwarding the streams produced

by one kernel to subsequent kernels as shown by the arrows in the example of figure

2.2. Ideally, these intermediate streams are captured entirely in on-chip memory, and

do not generate off-chip memory accesses. Stream-level temporal locality is expressed

by a single stream being consumed by multiple kernels. Once generated or fetched

from memory, such streams are held in on-chip memory whenever possible for the

entire duration of all uses. Finally, off-chip memory accesses are performed for reading

essential application inputs and writing final application outputs. This programming

model matches well with the hierarchy of registers, on-chip memory, and off-chip

memory present in most architectures. The registers are typically optimized for high

bandwidth to sustain computation while the on-chip memory is optimized for large

capacity to capture the working sets of applications and to hide memory latency.
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The partitioning of applications in to kernels is driven by the available register and

memory resources of the target architecture. Kernels are sized to minimize register

spills, potentially partitioning loop bodies that generate more intermediate state than

can be held in registers in to multiple kernels. At the application level, data sets that

are too large to fit in on-chip memory are partitioned using a technique known as

strip-mining [Lov77]. Strip-mining partitions the input data set in to segments known

as strips such that all of the intermediate state for the computation on a single strip

fits in on-chip memory. Thus multiple strips can be operated on in sequence, still

limiting off-chip memory accesses to only the essential application inputs and outputs.

Parallelism

The stream programming model also exposes multiple levels of parallelism inherent in

the application. Data parallelism is expressed since the kernel loop body may be ap-

plied to many records of an input stream at once. In the FEM example, the K1 kernel

can be applied to all of the cells of its input stream in parallel, assuming the processor

the stream program is being executed on has sufficient compute resources. ILP may

also be exploited within the stream programming model by executing multiple inde-

pendent operations among those that must be applied to a single data element (i.e.

within a single iteration of the kernel loop body) in parallel. This may be achieved

via pipelining and/or issuing multiple instructions per cycle.

Task-level parallelism across kernels is also exposed by the stream programming

model. For example, kernels K1 and K2 in the above example may execute in parallel

on different processors, with the results of K1 being passed on to K2. In addition, the

execution of a kernel may also be overlapped with the loading of application inputs

for a subsequent kernel or storing of results generated by a previous kernel.

The stream programming model does not allow arbitrary accesses to global mem-

ory within kernels. This restriction enables inter-kernel access disambiguation to

be performed at the stream level. In this context, applications that require data-

dependent address generation must first generate a set of indices and use those to

gather data in to contiguous streams which can then be used as inputs to subsequent

kernels. Such an example is shown by the access to the flux array in the example of

figure 2.2, where K1 generates the indices and the gathered stream is consumed by



CHAPTER 2. BACKGROUND AND MOTIVATION 12

K2. Similarly, data dependent writes my be performed by scattering a result stream

using an index stream after the completion of the kernel(s) that generates the results.

Stream Programming Languages

Applications can be expressed in the stream programming model through specialized

high-level languages. [Mat02] describes KernelC, a language for representing compute

kernels, and StreamC, a language for orchestrating sequences of kernels and stream

manipulations along with serial portions of code that are not data parallel. [BFH+04]

presents Brook, a unified language for expressing kernel and serial code as well as

the orchestration of kernels. [TKA02] describes streamit, a language for expressing

stream computation as a collection of filters connected via pipelines, split-joins, and

feedback loops. All of these languages are based on the familiar syntax of mainstream

languages such as C/C++ and Java and add additional semantics to express streams

and impose restrictions to enable data flow and dependency analysis among kernels

or filters.

The benchmarks used for evaluations in this thesis were implemented in the stream

programming model using the StreamC and KernelC programming languages. Using

the stream programming model allows the locality and parallelism in the applica-

tions to be exploited across a variety of processor architectures. In addition, novel

techniques introduced in this thesis, such as indexed SRF access, epoch-based cache

invalidation, and hybrid memory hierarchies, are evaluated within the context of

stream programming. While these techniques also have potential applications out-

side the domain of stream programming, the locality exposed by this programming

model enables these techniques to achieve a high degree of efficiency.

2.3 Stream Processor Architecture

Stream processors are programmable processors that are optimized for executing pro-

grams expressed using the stream programming model. A block diagram of a stream

processor is shown in figure 2.3.

The stream processor operates as a coprocessor under the control of the host pro-

cessor, which is often a standard general-purpose CPU. A stream program executing



CHAPTER 2. BACKGROUND AND MOTIVATION 13

Compute cluster 0

Compute cluster 1

Compute cluster Ncl-1

S
tr

ea
m

 r
eg

is
te

r 
fil

e

In
te

r-
cl

us
te

r 
ne

tw
or

k

S
tr

ea
m

in
g 

m
em

or
y 

sy
st

em

Microcontroller
Host

interface

Stream processor

Host
processor

DRAM

DRAM

DRAM

Figure 2.3: Block diagram of a stream processor

on the host processor orchestrates the sequence of kernels to be executed and the

necessary transfer of input and output data streams between the stream processor

and off-chip memory. Kernel execution takes place directly on the stream processor

from instructions stored in the microcontroller. New kernels may be loaded into the

microcontroller as needed, possibly under explicit control of the host processor. The

sequence of operations initiated by the host processor to orchestrate the stream pro-

gram of figure 2.2 is shown in figure 2.4(a). Dependencies between these host-issued

operations are shown in figure 2.4(b). The host interface of the stream processor

issues the commands received from the host to the appropriate units as resources

become available, subject to dependencies among the commands.

Arithmetic units of the stream processor are grouped in to n identical compute

clusters. Each cluster consists of several functional units and associated registers. A

block diagram of an example cluster organization is shown in figure 2.5. The local

register files (LRFs) attached to each functional unit provide the input operands for

that unit, and results are written to one or more of the LRFs via the intra-cluster

network. Loop-carried state and other shared data may be communicated among
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load_microcode(K1);
load_microcode(K2);
load_microcode(K3);
load_microcode(K4);
load_stream(Cells, s0);
K1(s0, s1);
load_stream(Fluxes[s1], s2);
K2(s2, s3);
K3(s0, s3, s4);
K4(s4, s5);
store_stream(s5, Updates);

(a) Operation sequence

load_
microcode

(K1)

load_
microcode

(K2)

load_
microcode

(K3)

load_
microcode

(K4)

load_stream
(Cells, s0)

K1(s0, s1)

load_stream
Fluxes[s1], s2

K2(s2, s3)

load_
microcode

(K2)

load_stream
(Fluxes[s1], s2)

K3(s0, s3, s4)

K4(s4, s5)

store_stream
(s5, Updates)

Start

load_
microcode

(K1)

load_
microcode

(K2)

load_
microcode

(K3)

load_
microcode

(K4)

load_stream
(Cells, s0)

K1(s0, s1)

load_stream
Fluxes[s1], s2

K2(s2, s3)

load_
microcode

(K2)

load_stream
(Fluxes[s1], s2)

K3(s0, s3, s4)

K4(s4, s5)

store_stream
(s5, Updates)

Start

(b) Inter-operation dependencies

Figure 2.4: Host processor operations for simple FEM example

compute clusters over the inter-cluster network via the COMM unit.
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Figure 2.5: Block diagram of a single compute cluster

The microcontroller executes the instruction streams for the kernels and broad-

casts the control for arithmetic operations to the compute clusters. Therefore all com-

pute clusters execute the same sequence of operations in single-instruction multiple-

data (SIMD) fashion. While SIMD execution is not fundamental to stream computa-

tion, it amortizes the overhead of instruction storage and control sequencing hardware

over all clusters, leading to implementation efficiencies. The data parallelism in ap-

plications is exploited by each compute cluster operating on a separate element of the

input stream(s). Techniques such as predication and conditional streams [KDR+00]

are used to provide efficient support for conditional execution within this SIMD frame-

work.

The units within a compute cluster are controlled in VLIW fashion, exploiting the

ILP available within a single iteration of the kernel loop. Loop unrolling and software

pipelining may be performed at compile time to increase arithmetic unit utilization

in kernels that do not have sufficient ILP to fill a large fraction of the VLIW issue

slots.

The stream register file (SRF) is a large on-chip memory that provides storage for

intermediate streams, capturing the producer-consumer and temporal locality that

exists between kernels at stream granularity.

The streaming memory system includes one or more stream load/store units for

transferring streams between off-chip memory and the SRF, memory controllers for

off-chip DRAM, and optionally, an on-chip cache.



CHAPTER 2. BACKGROUND AND MOTIVATION 16

2.3.1 Bandwidth Hierarchy

The bandwidth hierarchy of a stream processor is formed by the LRFs, SRF, and the

streaming memory system. Table 2.1 lists the bandwidths available at each level of

the hierarchy for the Imagine [RDK+98] and Merrimac [DHE+03] stream processors.

In these processors, each level of the hierarchy closer to the arithmetic units provides

approximately an order of magnitude or more bandwidth than the previous level. By

capturing data reuse in high-bandwidth levels, these architectures have demonstrated

sustained high utilization on many arithmetic units despite limited off-chip memory

bandwidth.

Imagine Merrimac
(400 MHz) (1 GHz)

Local register files, aggregate (GB/s) 435.2 3072
Stream register file (GB/s) 25.6 512
Memory system (GB/s) 1.6 64

Table 2.1: Bandwidth hierarchy of Imagine and Merrimac processors

The bandwidth hierarchy of a stream processor also forms a close match to the

levels of locality exposed by the stream programming model. The LRFs capture

kernel locality while the SRF captures stream-level producer-consumer and temporal

locality among kernels. Figure 2.6 shows how the example application of figure 2.2

maps to the bandwidth hierarchy.

Local Register Files

The total register capacity of a stream processor is divided between the SRF and

LRFs. This allows the SRF to be optimized for high capacity to capture the working

set while the LRFs are optimized for high bandwidth, albeit with smaller capacity.

In order to sustain the necessary high bandwidth, the local registers are implemented

in a distributed manner consisting of several register files in each compute cluster.

Each LRF has a small number of read ports that directly feed arithmetic units, and

one or more write ports that are connected to the intra-cluster network. Bandwidth

for sustaining parallel computation is provided by the aggregate of all LRFs.
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Cells s0
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s1

Fluxes

s2
K2

s3

K3

s4

K4s5Updates

Off-chip memory SRF Compute clusters/LRFs

Figure 2.6: Bandwidth hierarchy mapping of FEM example. Solid arrows represent
stream transfers, dotted arrows represent index transfers

The implementation described above partitions the register set of a stream proces-

sor along multiple axes – between the SRF and LRFs, among the compute clusters,

and the LRFs within each cluster. [RDK+00b] provides a detailed analysis of parti-

tioned register implementations for stream processing, and shows that such architec-

tures suffer only minimal performance loss compared to unified register architectures

while achieving area and power savings of orders of magnitude. In addition, the dis-

tributed LRFs can be implemented in close physical proximity to the arithmetic units

that they feed, further reducing the energy spent on operand accesses.

Stream Register File

The SRF is partitioned in to Ncl banks, where Ncl is the number of compute clusters.

As describe in [RDK+00b], each compute cluster is closely tied to a single SRF bank.

A compute cluster and the associated bank of the SRF is referred to as a lane of the

stream processor. In order to enable efficient, high-bandwidth access, each compute

cluster can only read or write the bank of the SRF in its own lane.

The banked implementation reduces the number of SRF ports needed. Since each

bank only needs to support one cluster, the SRF can be implemented using single-

ported memories. In order to increase the SRF bandwidth of such an implementation,
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the single port of each SRF bank is several words wide. Therefore, each access

reads or writes a contiguous block of words in the SRF. However, a compute cluster

typically consumes or generates streams a single word at a time, but may require

multiple streams to be accessed simultaneously for some kernels. This difference in

SRF and compute cluster stream access characteristics is resolved by stream buffers

as introduced in [RDK+00b] (not to be confused with the cache prefetch structure

of the same name described in [Jou98]). Stream buffers mediate the communication

between the SRF and compute clusters as shown in figure 2.7 and provide a rate

matching function between the two units. On an SRF read of stream s, a wide block

of several data words is read and placed in to stream buffer s. On cluster reads of

stream s, the block of data is funneled into the compute cluster a single word at

a time. The process is reversed for write streams, collecting the individual words

written by the clusters in to the stream buffer until sufficient data is available to

perform a block write in the SRF. The stream buffers also provide the abstraction

of sustaining multiple concurrent streams by time-multiplexing the single, wide SRF

port among several active streams, each mapped to a different stream buffer. Access

to the single SRF port among multiple active streams is managed through dynamic

arbitration. Data streams are distributed among SRF banks at the granularity of

records such that record r of a stream maps to SRF bank r mod Ncl. The SIMD

nature of the execution applies to the SRF as well. During an SRF access, the same

block is accessed within every bank.
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Figure 2.7: Stream buffers match the access characteristics of the SRF and compute
clusters (only a single lane is shown for simplicity)

The SRF also acts as a staging area for stream transfers to and from memory.

Input streams are loaded in to the SRF and held there until the kernel that consumes



CHAPTER 2. BACKGROUND AND MOTIVATION 19

them is executed. Similarly, application results generated by kernels are held in the

SRF until written to memory. Therefore, the SRF is a critical component in enabling

the overlap of memory accesses with computation since kernels can continue to operate

on data in the SRF while memory transfers take place in the background.

Streaming Memory System

The streaming memory system (SMS) manages the transfer of streams between off-

chip memory and the SRF. A block diagram of the key components of the SMS is

shown in figure 2.8, which includes one or more stream load/store (L/S) units, the

memory switch, DRAM interfaces, and optionally, an on-chip cache.
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Figure 2.8: Block diagram of the streaming memory system shown with two stream
load/store units and an optional on-chip data cache

Once a stream L/S units is setup for a stream transfer by the host processor,

the address generator produces a sequence of memory addresses that correspond to

the locations to be accessed in off-chip memory. In the case of a read stream, those

locations are read, and the data is transferred to the reorder buffer (ROB) in the

L/S unit. The accesses may return from the memory out of sequence, requiring the
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ROB to recreate the intended stream order. The ROB also acts as a stream buffer,

interfacing the memory system to the SRF in much the same way the stream buffers

for the compute clusters do. In the case of write streams, the data is read from

the SRF via the ROB, and is written to memory. The number of ROB entries is

determined by the number of memory requests necessary to be outstanding at a time

in order to achieve high bandwidth utilization as described in section 2.1.

An optional cache may also be integrated in to the memory system. However,

unlike caches in scalar processor architectures, the main objective of the cache is not

to reduce the average memory access latency (i.e. sufficient outstanding accesses to fill

the memory pipeline to off-chip memory must still be supported, even in the presence

of a cache). The main purpose of the cache is to provide bandwidth filtering by

capturing potentially reused data, reducing the the bandwidth that must be sustained

from off-chip memory. However, since not all stream accesses may have data reuse

that can be exploited through caching, the programmer or compiler may selectively

specify which accesses are to be cached.

The off-chip memory of stream processors consist of commodity DRAM. The mem-

ory controllers are integrated on chip, and several DRAM channels are supported to

increase bandwidth. The memory interfaces also implement memory access scheduling

to optimize the performance of the off-chip DRAMs [RDK+00a].

Despite the presence of an efficient bandwidth hierarchy, performance of appli-

cations (or segments of applications) may still be constrained by bandwidth if the

computation performed per unit of data accessed at any level of the hierarchy is less

than what can be sustained by the arithmetic units. This is a particular concern for

off-chip memory, which forms the lowest bandwidth level of the hierarchy. Therefore,

a key focus of this thesis is to identify and evaluate enhancements to on-chip lev-

els of the bandwidth hierarchy that allow more efficient utilization of scarce off-chip

memory bandwidth by eliminating non-essential accesses.

2.4 Alternative Data Parallel Architectures

The following sections briefly introduce vector and multi-context architectures and

CPU media extensions – three commonly used alternatives to stream processors for
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exploiting data parallelism. A more comprehensive discussion of the similarities and

relative strengths of these architectures from a bandwidth hierarchy perspective will

be presented in chapter 3.

2.4.1 Vector Processors

Vector processing expresses an application as sequence of vector operations operating

on vectors of data. A vector is an array of one-word data elements of a primitive

type, and a vector operation is a single arithmetic operation, such as an add or a

multiply, that is applied to all elements of its input vectors. Figure 2.9 revisits the

simple computation of figure 2.1, but expressed as a sequence of vector operations.

Conceptually, a single operations is applied to all elements of a vector before any

operations are applied to the resulting output. This differs from stream processing

where, conceptually, all operations on a single input stream element (i.e. an entire

data record) are applied before any operations are applied to the subsequent input

elements. Therefore, vector processing differs from stream processing on the granu-

larity at which the data-parallel computation is expressed. In real implementations,

both stream and vector machines may operate on multiple data elements in parallel

to improve performance, but retain their differences in the granularity at which the

parallelism is expressed.

−−−−

−−−−

C1.X[ ]

C2.X[ ]

C1.Y[ ]

C2.Y[ ]

××××

××××

++++
Result[ ]

for i=0 to vector_length {
out[i] = C1.Y[i] – C2.Y[i]

}

−−−−

−−−−

C1.X[ ]

C2.X[ ]

C1.Y[ ]

C2.Y[ ]

××××

××××

++++
Result[ ]

for i=0 to vector_length {
out[i] = C1.Y[i] – C2.Y[i]

}

Figure 2.9: Vector processing representation of squared distance computation
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Vector processing was originally proposed in the context of high-performance su-

percomputers [Rus78]. Modern implementations such as Cray X-1 [Cra02] and NEC

SX family [KTHK03] continue to target scientific computing. However, the applica-

bility of vector processing to other data parallel application domains, such as media

processing, has been demonstrated [Koz02].

Modern vector processors share many implementation similarities with stream

processors. Arithmetic units within a vector processor are grouped in to vector pipes.

Multiple vector pipes may operate in parallel using SIMD execution, operating on

independent vector elements similarly to the compute clusters of a stream processor.

Vectors are stored in a vector register file (VRF) that captures the intermediate results

between vector operations. The VRF is multi-banked with independent banks asso-

ciated with vector pipes, each bank providing high bandwidth access to its associated

pipe only. Vector processors also exploit ILP, executing multiple vector instructions

in parallel. A technique known as chaining, first introduced in the Cray-1 [Rus78],

is used to forward results between arithmetic units within the same pipe that are

executing different vector instructions in parallel. Simple chaining requires that the

chained instructions be carefully synchronized, but requires no significant buffering

of intermediate results or additional ports to the VRF. A more general extension

of the idea, flexible chaining, relaxes the synchronization constraints at the cost of

additional buffering and/or VRF ports for chained intermediate results.

Most vector architectures rely on the VRF to both provide the bandwidth neces-

sary to sustain computation and to capture the working set. However, some vector

architectures share a further commonality with stream processors in that they employ

a 2-level register hierarchy similar to the SRF and LRFs. For example, the NEC SX

family of vector processors partition the register space in to a small number of vec-

tor arithmetic registers (8 256-element vectors in the case of the SX-6) and a larger

number of vector data registers (64 256-element vectors in the SX-6) [SX-02]. The

vector arithmetic registers provide the operand bandwidth for the arithmetic units

while the vector data registers provide added capacity. The vector data registers

cannot be directly operated on, and must be explicitly copied to an arithmetic regis-

ter before being operated on. However, results of vector operations may be directly

written to both types of registers. Vector architectures may also optionally integrate
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an on-chip cache between the VRF and off-chip memory to filter off-chip accesses

[SZ88; YY92; KSF+94].

A detailed discussion of vector processors and their design tradeoffs can be found

in [Asa98].

2.4.2 Multi-threaded Processors

Multi-threaded architectures can also be used to exploit data parallelism. Concep-

tually, every iteration of a data parallel loop can be viewed as a separate thread or

context, enabling stream programs to be mapped easily to such architectures. There-

fore, long memory latencies can be overlapped with computation on other contexts

which operate on independent data elements. Parallel execution among data elements

may be achieved in multi-threaded processors using techniques such as simultaneous

multi-threading [TEL98], which executes instructions from multiple threads concur-

rently on a single processor, or by integrating multiple processor cores on a single

chip.

2.4.3 Media Extensions to General-purpose CPUs

Virtually all major general-purpose CPU families have incorporated some form of sup-

port for exploiting data parallelism targeted at media applications [PW96; TONH96;

DDHS00; Lee96]. These techniques enable a small number of SIMD computations

to be specified using a single instruction to be executed on data read from a wide

register file. However, these extensions do not exploit data parallelism to the degree

that specialized data parallel architectures such as stream or vector processors do.

Media extensions provide neither special support for overlapping computation with

memory accesses in order to tolerate memory latency (beyond what support exists for

scalar computation in the CPU), nor do they provide a specialized bandwidth hierar-

chy to sustain computation on very large numbers of arithmetic units. Further, each

instruction, which specifies only a small number of operations, must be issued via

the out-of-order scalar issue mechanism present in most modern processors, incurring

high energy overheads.
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2.5 DRAM Characteristics

Most modern data parallel architectures use commodity DRAM for main memory due

to cost, density, and power considerations. This section provides a brief introduction

to DRAM access timing and characteristics in order to understand the impact on the

performance of stream accesses from off-chip memory.

Modern DRAM memories, such as DDR2 SDRAM and DRDRAM, contain mul-

tiple internal banks, and the cells within each bank are arranged as a 2D array with

sense amplifiers along one edge (or two parallel edges) as shown in figure 2.10. Ad-

dressing for DRAM access is done in two stages. During row access (also referred

to as activate), an entire row of the array is read via the sense amplifiers and stored

in latches called the row buffer. Data in the row buffer is referred to as the active

row, and portions of it are read or written using column accesses. Therefore, typical

DRAM access consists of a row access followed by one or more column accesses. When

data from a different row of the DRAM is needed, the currently active row is closed,

i.e. written back to the DRAM cells, and the array bitlines precharged to prepare for

the next row access. Typically, new row activations take significantly longer than a

column access to an already active row. Some critical latencies for a current DDR2

SDRAM part [Mic03] are summarized in table 2.2. Figure 2.11 shows a simple exam-

ple of a sequence of accesses to a single DRAM bank and the ensuing operations. As

can be seen from this simple example, the bandwidth and the distribution of access

latencies of DRAMs depend heavily on the access pattern, which varies the mix of

row and column accesses.

Operation Latency

Minimum time from row access to column access (tRCD) 20ns
Column access to data read time (CL) 20ns
Minimum time between successive column accesses (tCCD) 10ns
Minimum time from precharge to next activate (tRP ) 20ns
Minimum time between row accesses to same bank (tRC) 65ns

Table 2.2: Examples of SDRAM access latencies (Micron 256Mb DDR2, speed grade
-5)

DRAMs support a few options to reduce the impact of long precharge and row
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Figure 2.11: Example DRAM access operations schedule

access latencies:

• Burst mode rapidly accesses multiple consecutive data elements from the ac-

tive row following a single column access command. Such accesses provide high

throughput for sequential access patterns.

• Multiple banks within a DRAM chip allow overlapping of commands to dif-

ferent banks. While the address pins of the DRAM are occupied during the

communication of commands to any bank, this approach enables some frac-

tion of the long latency precharge and row activations to be overlapped with

operations in other banks.
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• Open row policies maintain the active row after pending access(es) complete,

anticipating subsequent accesses to map to the same row. If this is indeed the

case, row accesses are avoided. If subsequent accesses map to other rows, both

precharges and row accesses are incurred. Alternatively, closed row policies

proactively close the active row and precharge the array when pending accesses

to the active row complete. This avoids the precharges but incurs row accesses

for subsequent operations regardless of the row they map to.

2.6 Emerging Trends

Several trends in applications and implementation technology make memory system

design even more crucial for stream processing.

While stream processors were originally proposed to handle media and signal

processing applications with straightforward data access patterns, there have been

recent efforts to extend stream processing to more complex applications in signal

processing as well as other application domains such as scientific computing [Raj04;

DHE+03]. These applications require the memory system to support a wider range

of access patterns. Therefore, extensions to the streaming bandwidth hierarchy that

efficiently support a wider range of accesses enables the high performance potential

of stream processors to be realized over a larger class of applications.

At the same time, implementation technology scaling continues to exponentially

increase the number of devices available on a single chip, increasing the potential

compute capability of processors. However, off-chip memory bandwidth and latency

are scaling at a much lower rate [Pat04], increasing the demands on the bandwidth

hierarchy to make ever more efficient use of the scarce off-chip bandwidth. Therefore,

techniques that improve the efficiency of off-chip bandwidth use become increasingly

important with technology scaling.

The increasing number of devices also makes it possible to integrate stream proces-

sors, or other data parallel processors, along with general purpose CPUs on the same

die to accelerate media processing and other similar tasks [EAE+02; Bor04]. In such

implementations, the stream processor must share parts of the memory hierarchy de-

signed for the general-purpose CPU. Insights drawn from dedicated stream processor
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bandwidth hierarchies can be used to develop techniques to adapt general-purpose

memory hierarchies to better suit stream processing in these implementations.

2.7 Summary

This chapter was intended to provide an overview of concepts central to stream pro-

cessing, and a brief introduction to stream processing itself. We explored the char-

acteristics of data parallel application classes that make them ideal candidates for

exploiting the raw potential of today’s VLSI circuit technology. The high degree of

parallelism available in these applications were identified as the critical aspect that en-

ables parallel computation on many arithmetic units while tolerating the long off-chip

memory access latencies of modern processors.

The stream programming model was introduced as a way of expressing data par-

allel applications in a manner that exposes the inherent parallelism as well as the

available data locality. This programming model enables filtering of the high operand

bandwidth needed to sustain computation by capturing the exposed locality at mul-

tiple levels of a bandwidth hierarchy. Stream processors, a class of architectures opti-

mized for executing applications expressed using the stream programming model was

also introduced in this chapter, along with a discussion of the specific implementation

of the bandwidth hierarchy in these processors.

This chapter also provided a brief overview of alternative programmable data par-

allel architectures, such as vector and multi-threaded processors. We will expand on

this introduction in terms of the relative strengths of these architectures from the

perspective of bandwidth hierarchy design in chapter 3. A short introduction was

also presented to modern DRAMs, a crucial component in the memory systems of

most data parallel architectures. Finally emerging trends in applications and imple-

mentation technology that encourage further research on memory systems for stream

computing was presented.

The next several chapters of this thesis will build on the background provided

in this chapter to identify opportunities to broaden the applicability of stream pro-

cessing, and to further improve the performance and implementation efficiency of

bandwidth hierarchies for data parallel architectures.



Chapter 3

Granularity of Data Parallelism

An important aspect of data parallel computing is the granularity at which the par-

allelism is expressed. In the case of stream processing, data parallelism is expressed

at the granularity of stream elements, or entire records. An alternative is to express

the parallelism at the granularity of individual words, as is done in vector processing.

This distinction leads to two important implications for memory hierarchy design.

First, since the order of operations differs in these two cases as described in section

2.4.1, the amount of intermediate state generated, and hence the amount of register

space needed to store that state, is different. Second, the order in which the data

words are accessed from memory is different in the two cases, leading to differences in

the access patterns seen by the memory hierarchy. This chapter explores the impact

that expressing data parallelism at record and word granularity has on both these

aspects.

3.1 Register Capacity Requirements

The differences in the amount of register capacity required by stream (i.e. record

granularity) and vector (i.e. word granularity) computation can be analyzed using a

simple analytical model. In both cases, the register capacity demands must satisfy

two requirements in order to achieve high performance. First, the intermediate state

of the application loop body being executed must be held in the registers. Second, the

registers must provide sufficient space to stage data transfers to and from memory.

28
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This enables computation to take place on data already in the registers while inputs

for future computations are being prefetched, effectively overlapping memory latency

with computation.

In the case of vector execution, the intermediate results generated within the

loop body are expanded out by the vector length since they are computed for the

entire vector(s). Therefore, the register capacity required for vector computation is

given by Cv of equation (3.1) where Smax is the maximum concurrent intermediate

state required at any point during a single iteration of the loop body, Lvec is the

vector length, BM is the off-chip memory bandwidth, and TM is the off-chip memory

access latency. Note that Lvec is typically determined by the ratio of vector data

bandwidth to instruction issue rate. The number of operations specified by each

vector instruction, which is equivalent to Lvec, must be sufficiently large to fully

consume the available vector register bandwidth at the vector instruction issue rate

of the processor.

Cv = Smax × Lvec + BM × TM (3.1)

Stream computation requires intermediate state to be maintained in LRFs for

only the current iteration being executed. However, further state is required in the

SRF for the input and output streams. Therefore, total register capacity in LRFs

and SRF for stream order computation is given by Cs of equation (3.2) where SIO is

the input and output data elements per iteration of the loop, Lstr is stream length,

and Smax, BM , and TM are the same as in the vector case above.

Cs = Smax + SIO × Lstr + BM × TM (3.2)

3.1.1 Impact of Parallel Execution

The above expressions assume no exploitation of parallelism in hardware. However,

modern implementations of stream and vector architectures exploit data parallelism

and ILP as described in chapter 2. SIMD execution of multiple parallel clusters in-

creases LRF capacity requirements for streaming by a factor of Ncl, the number of
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compute clusters. Total intermediate state requirements for stream-order computa-

tion with the additional requirements for SIMD execution is given by equation (3.3).

Note that SIMD execution does not increase register requirements of vector processing

as intermediate storage for the entire vector length is already allocated.

Cs = Smax × Ncl + SIO × Lstr + BM × TM (3.3)

Finally, loop unrolling and software pipelining is often used when scheduling ker-

nels to achieve high functional unit utilization. In the case of vector architectures,

unrolling and pipelining is done to the extent necessary to utilize multiple units within

each vector pipe. Subsequent operations issued to the same functional unit do not of-

ten require independence for long vectors since a single vector instruction occupies the

same unit for several cycles. For example, with a vector length of 256 and 8 parallel

vector pipes, a single instruction occupies the functional units for Lvec/Npipes = 32 cy-

cles, which is sufficient for even a heavily pipelined functional unit to start generating

results.

In the case of stream computing, intermediate results are computed only on a

single element, and the results may be needed immediately by other dependent oper-

ations scheduled on the same compute cluster. In addition, multiple instructions may

be issued in parallel to different arithmetic units within each cluster, similar to vector

architectures. Therefore, the amount of ILP needed for high utilization of a stream

processor is proportional to the product of the number of units within a cluster and

the pipeline latency of the units. As a result, stream computing is likely to require a

greater degree of loop unrolling and software pipelining compared to vector process-

ing, leading to increased register requirements. Equations (3.4) and (3.5) reflect the

impact of loop unrolling and software pipelining. Pvec and Pstr denote the increase in

register capacity requirements due to software pipelining and loop unrolling for the

vector and stream cases respectively.

Cv = Pvec × Smax × Lvec + BM × TM (3.4)

Cs = Pstr × Smax × Ncl + SIO × Lstr + BM × TM (3.5)
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Figure 3.1(a) shows Cv normalized to Cs over a range of values for Smax and Pstr.

The remaining parameters are fixed as listed in the figure caption, with hardware

parameters such as Lvec = 256 based on current state-of-the-art implementations.

Vector processing clearly requires more register storage due to the expansion of inter-

mediate state by vector length except at high values of Pstr/Pvec. Figure 3.1(b) shows

the same data for the Lvec = 64 design point, which indicates the register increase is

less severe at shorter vector lengths. The issue of vector length will be revisited in

section 3.1.2.

Register savings from to stream order computation can be overwhelmed at high

values of Pstr/Pvec. In reality, however, the degree of loop unrolling and software

pipelining necessary to achieve the desired level of parallelism is often small, as can

be seen from table 3.1 which lists the degrees of loop unrolling and software pipeline

depths encountered in representative stream implementations of a few applications.

While software pipelining is frequently used, the resulting factor of register capacity

increase is often much smaller than the depth of the pipeline itself as the the peak

register usage of all concurrent iterations usually do not overlap. Therefore, exploiting

data parallelism at record granularity requires less intermediate register state than

doing so at word granularity.

Application Degree of Loop Software
Unrolling Pipeline Depth

FFT 2D 1 2 to 3
Rijndael encryption 1 2
MPEG Encode 1 2 to 3
2D Finite element method 1 2 to 6
3D Finite element method 1 2 to 5
Molecular dynamics 1 3

Table 3.1: Loop unrolling and software pipeline depths of application kernels for
stream processing
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Figure 3.1: Register capacity requirements of word granularity parallelism relative to
record granularity parallelism for Pvec = 1, F = 4, BM = 8 words/cycle, TM = 200
cycles, Ncl = 8, SIO = 10

.

3.1.2 Discussion

The above analysis compares the intermediate state requirements of record and word

granularity exploitation of data parallelism, which closely parallel the current imple-

mentations of stream and vector processors respectively. However, the above ana-

lytical models also indicate some similarities between practical implementations of
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stream and vector processors. In particular, Ncl of equations (3.3) and (3.5) closely

corresponds to Lvec of equations (3.1) and (3.4) in that they are both multipliers of

intermediate state. This reflects that fact that the SIMD execution across clusters of

a stream processor, which provides high performance by exploiting data parallelism,

can be viewed as word granularity computation over Ncl data elements. Therefore,

the lower intermediate register requirements of stream processors is achieved by re-

ducing the degree of word granularity parallelism relative to vector processors. Ncl

of current stream processors is typically 8 to 16, while Lvec of vector architectures is

typically 64 to 256 elements.

The above reasoning also implies that intermediate state requirements of vector

processors may also be reduced by shortening the vector length. An inner-loop would

perform the computation on short vectors of length Lsvec (<< Lvec) while an outer

loop will sequence the short vector operations over long vectors of length Lvec fetched

from memory. Such a vector processor has intermediate state requirements identical

to a stream processor with svec number of SIMD clusters. However, operating on

short vectors increases vector instruction issue requirements by a factor of Lvec/Lsvec,

increasing the complexity of the issue mechanism. Limited vector instruction issue

bandwidth is often a key constraint dictating the long vectors used in current vector

processor implementations. A potential solution may be to incorporate a dedicated

sequencer similar to the microcontroller of a stream processor to issue vector instruc-

tions.

3.2 DRAM Performance

The second memory hierarchy difference between record and word granularity expres-

sion of data parallel computation is the performance of the memory system under the

ensuing access patterns. As discussed in section 2.5, the performance of modern

DRAMs vary based on the ordering of the access sequence. Applications group re-

lated data items into records, and streams access entire records at a time, exposing the

application-level locality among fields of a record to the memory system. However,

vector accesses obscure this record spatial locality by accessing sequences of individual

words, typically picking out the same field of each record within a collection.
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Vector and stream memory accesses that appear in applications can broadly be

classified in to three categories. Unit strides sequentially access every vector or stream

element within a contiguous range. Non-unit strides access every S th element, where S

(> 1) is referred to as the stride. Indirect accesses are to arbitrarily ordered sequences

of elements within a finite range, with the order of accesses usually specified by an

explicit sequence of indices. DRAMs perform well under unit stride accesses since the

resulting contiguous memory access can benefit from bursts and repeated accesses to a

row once it is activated. Non-unit strides and indirect accesses perform less efficiently

as bursts are sub-optimal for non-contiguous accesses, especially in the case of vectors.

In addition, as the stride or the sparseness of the index pattern increases, the number

of column accesses per row activation decreases, reducing effective bandwidth.

Vectors and streams lead to identical accesses for single-word data types, but yield

different access patterns for multi-word records. Figure 3.2(a) shows a simple example

of an array of 3-word records stored in memory in record order (i.e. each record stored

contiguously). A unit-stride stream access to this array results in a sequential memory

access as shown in figure 3.2(b). Accessing the same data as vectors results in three

accesses of stride 3 as shown in figure 3.2(c). Not only does this vector access lack

spatial locality, but if the data structure spans over multiple DRAM rows, each row

is touched by all of the vector accesses, potentially leading to increased DRAM row

activations.

The vector access can be optimized by reordering the data in memory to be in

vector order as shown in Figure 3.3(a), where the ith word (1 ≤ i ≤ record size) of

all records are placed contiguously in memory. This results in 3 unit-stride vector

accesses as in figure 3.3(b), achieving memory performance comparable to the stream

access. However, rearranging data layout in memory may not be globally optimal if

the same data is accessed in multiple patterns. This is a particular concern if the data

is accessed by both the scalar and vector processors since scalar accesses rely heavily

on cache lines to capture spatial locality. For example, a scalar processor access to

a record in figure 3.3(a) could potentially cause as many cache misses as the record

length.
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(a) Memory data layout
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(b) Single stream access

X1 X2 X3 X4 X5 X6 X7X0

Y1 Y2 Y3 Y4 Y5 Y6 Y7Y0

Z1 Z2 Z3 Z4 Z5 Z6 Z7Z0

X1 X2 X3 X4 X5 X6 X7X0

Y1 Y2 Y3 Y4 Y5 Y6 Y7Y0

Z1 Z2 Z3 Z4 Z5 Z6 Z7Z0

(c) Three stride 3 vector accesses

Figure 3.2: Stream and vector access to linear array of 3-word records in memory
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(a) Memory data layout optimized for vector access

X1 X2 X3 X4 X5 X6 X7X0

Y1 Y2 Y3 Y4 Y5 Y6 Y7Y0

Z1 Z2 Z3 Z4 Z5 Z6 Z7Z0

X1 X2 X3 X4 X5 X6 X7X0 X1 X2 X3 X4 X5 X6 X7X0

Y1 Y2 Y3 Y4 Y5 Y6 Y7Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7Y0

Z1 Z2 Z3 Z4 Z5 Z6 Z7Z0 Z1 Z2 Z3 Z4 Z5 Z6 Z7Z0

(b) Three unit stride vector accesses

Figure 3.3: Array of 3-word records optimized for vector access

Strides and Multi-word DRAM Bursts

A stride 2 access to the array of figure 3.2(a) using a DRAM burst length of 2 words

is shown in figure 3.4. The stream access uses a single burst to fetch the first two

words of a record. A second burst yields one useful word and an extra word that is

discarded. The vector access does not benefit from bursts, and in fact suffers since

half the data returned by each burst is discarded. Note that placing the data in vector

order in memory as in figure 3.3(a) does not alleviate this problem since the accesses

would still be non-contiguous. A similar reasoning applies to indirect accesses as well.
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(b) Vector access (burst = 2 words)

Figure 3.4: Stride 2 access to array of 3-word records using 2-word DRAM bursts

3.2.1 Impact of Caches

Multi-word cache lines can capture spatial locality of records ignored by vector ac-

cesses such as in figure 3.4(b). However, the effectiveness of cache lines in capturing

locality in non-contiguous access patterns becomes suboptimal as the record size de-

viates from the cache line size or a multiple of it. Figure 3.5 shows the 3-word record

access example with a stride of 3 using 4-word cache lines. Since the cache line size is

larger than the record size, additional data is fetched, increasing DRAM bandwidth

demands. A similar increase in DRAM traffic can be expected in performing the same

access in stream order when using a cache. However, a stream access does not require

a cache to be used to capture spatial locality, and can be performed as an uncached

access if no temporal reuse of the data is expected.

Figure 3.6 illustrates the impact of a cache line size that is shorter than the record

size. While the cache lines do capture a subset of the spatial locality available in this

case, the additional row activations due to multiple vector accesses are not entirely

eliminated as each record incurs multiple cache misses on different vector accesses.

Figure 3.7 illustrates the impact of vector-optimized data layout on cache line

access efficiency using the same 3-word record access with stride 3. Note that the

optimized layout for this access results in 6 cache misses compared to 4 misses for

the unoptimized layout of figure 3.5. This increase in cache misses as a result of
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Y7 Z7Y5 Z5Y3 Z3Y1 Z1 Y6 Z6Y4 Z4Y2 Z2Y0 Z0 X1 X2 X3 X4 X5 X6 X7X0

Y3 Y6Y0

Z3 Z6Z0

Figure 3.5: Strided vector access with larger cache lines than data record size. Solid
arrows indicate cache line fetch initiations, dotted arrows represent cache hits due to
previous fetches, and horizontal dark lines indicate the spans of cache lines

Y7 Z7Y5 Z5Y3 Z3Y1 Z1 Y6 Z6Y4 Z4Y2 Z2Y0 Z0 X1 X2 X3 X4 X5 X6 X7X0

Y3 Y6Y0

Z3 Z6Z0

Figure 3.6: Strided vector access with shorter cache lines than data record size. Solid
arrows indicate cache line fetch initiations, dotted arrows represent cache hits due to
previous fetches, and horizontal dark lines indicate the spans of cache lines

vector order data layout occurs in cases where (cache line size)/stride is less than

the record size since each cache line yields fewer useful words.

In summary, as illustrated by the above examples, cache lines capture all or a

subset of the spatial locality ignored by vector accesses to records. However, a number

of potential inefficiencies remain due to mismatches between record size and cache

line size. In addition, vector-optimized data layouts, which do not retain the record

locality of the data, are often sub-optimal for cached accesses.
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Figure 3.7: Strided vector access with cache and vector-optimized data layout. Arrows
indicate cache line fetch initiations and horizontal dark lines indicate the spans of
cache lines

3.2.2 Evaluation Methodology

Latency of DRAM accesses are highly dependent on the sequence of addresses be-

ing accessed and on a number of complex timing parameters as described in section

2.5. The access characteristics are further complicated by the reordering of accesses

performed for memory access scheduling to optimize DRAM throughput [RDK+00a].

Therefore, a set of microbenchmark simulations are used instead of an analytical

model to analyze the performance impact of vector and stream order accesses. Sub-

sequently, a set of application benchmarks will also be evaluated.

The memory systems used for this evaluation are summarized in table 3.2. The

Full configuration is based on the memory system proposed for the Merrimac stream-

ing super computer [DHE+03] and is used for scientific benchmarks. The scaled down

Lite version is used for media and signal processing benchmarks. Both memory sys-

tems are evaluated with on-chip caches, as may be the case with high-performance

implementations, and without caches, as may be the case with low-cost or embedded

implementations. A word size of 64 bits is used in all configurations.

The results were obtained using cycle accurate simulations of the memory sys-

tems. Data-parallel execution is simulated (cycle-accurate) using the stream pro-

cessors summarized in table 3.3. The stream access results presented are based on

the actual accesses generated by the processors. Two types of vector accesses were

considered for each benchmark. The first, Vector, is generated by rearranging the

accesses from the stream processors to be in vector order (i.e. access ith word of all
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Full Lite

Physical DRAM banks 16 8
Internal banks per DRAM 16
DRAM page size 2KB
DRAM transfer width 128 bits (2 64-bit words)
DRAM burst size 128 bits (2 64-bit words)
Memory bank interleaving factor Same as burst size
Peak memory bandwidth (GB/s) 38 19
DRAM row policy Closed row

Cache size (KB) 512 256
Cache banks 8 4
Cache line size 128 bits (2 words)
Cache associativity 8 4
Peak cache bandwidth (GB/s) 64 32

Table 3.2: Memory system parameters for stream and vector access comparison

records before accessing (i + 1)th word of any record) with the same data layout in

memory as the stream case. The second set of vector data, Optimized Vector (or

OptVec), is generated by optimizing the data layout in memory for vector accesses

by placing the ith word of all records contiguously in memory as in the example of

figure 3.3. In addition, memory access scheduling with a closed row policy is used

to optimize the ordering of pending accesses in the memory controllers to improve

DRAM throughput for all configurations. These results do not include the effects of

accesses from scalar processors for both stream and vector accesses.

Full Lite

Clock frequency 1GHz
Compute clusters (lanes) 16 8
Peak compute (GFLOPs) 128 64

Peak memory request
(address) bandwidth

8 requests per cycle
from 2 independent
sequences

4 requests per cycle
from 2 independent
sequences

Table 3.3: Processor parameters for stream and vector access comparison

The above methodology does not reflect the differences in programming model,
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maturity of compiler tools, and programmer effort involved in targeting vector and

stream processors. We also assume that the VRF is of comparable capacity and

bandwidth to the SRF/LRF of the stream counterpart despite the implementation

inefficiencies of such a VRF as mentioned in chapter 2. By factoring out these dif-

ferences, this study provides a clear comparison of memory system performance for a

given set of accesses when performed as streams and vectors.

3.2.3 Microbenchmarks

The microbenchmarks used for this evaluation are summarized in table 3.4. Results

were obtained on the Full memory system using only a single address sequence in order

to highlight memory behaviors without inter-sequence interference (note, however,

that this limits the peak address bandwidth to 4 requests per cycle). Each benchmark

performs a 16K word access, and all data in this subsection are normalized to the

throughput of the Seq benchmark with a record size of 1 word.

Benchmark Access Pattern Record Stride Cached
Size (records)

(words)

Seq Sequential sweep over array 1 to 64 1 No
SeqC Sequential sweep over array 1 to 64 1 Yes
StrideRLn Strided sweep over array n 1 to 32 No
StrideCRLn Strided sweep over array n 1 to 32 Yes
IndirectRLn Pseudo-random indirect n - No
IndirectCRLn Pseudo-random indirect n - Yes

Table 3.4: Microbenchmarks used to evaluate memory system performance of stream
and vector accesses

Figures 3.8 shows the performance of Seq. Stream access achieves high band-

width for all record sizes except around multiples of 32. This is due to the fact that

stream access multiplexes 16 (i.e. the number of arithmetic clusters) record accesses

in round-robin fashion so that all clusters receive the same amount of data. With data

interleaved at 2-word granularity among 16 memory controllers, a record size of 32 or

a multiple causes the worst case bank conflicts among these parallel record accesses.
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Vector performs poorly for all record sizes other than 1 since the data layout in mem-

ory is in record order leading to strided accesses. Record sizes that are multiples of

four suffer further since the striding causes bank conflicts. OptVec performs well for

all record sizes as the data is laid out to enable unit stride accesses. Figure 3.9 shows

the performance of SeqC. Stream and OptVec performance is largely unchanged with

the addition of caching as the access pattern has no temporal locality, providing no

additional benefit for these accesses that already exploit the available spatial locality.

The slight degradation in Stream access performance with a cache is due to the added

contention at the cache bank inputs as a result of the 16 concurrent record accesses

described above. Vector performance improves as multi-word cache lines capture the

spatial locality otherwise lost by vector accesses.
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Figure 3.8: Uncached sequential access (Seq microbenchmark) performance under
Stream, Vector, and Optimized Vector accesses as record size varies (normalized to
Seq with 1-word records)

Figure 3.10 shows the performance of StrideRLn for n = 2 and 5. As can be

expected, all access types suffer from bank conflicts when the effective stride is an

even multiple of the burst size (note that addresses are distributed among DRAM

banks at the granularity of the burst size). The effective stride is the product of the

stride in records and the contiguous block of data per record as laid out in memory.
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Figure 3.9: Cached sequential access (SeqC microbenchmark) performance under
Stream, Vector, and Optimized Vector accesses as record size varies (normalized to
Seq with 1-word records)

Therefore, for Stream and Vector cases, the effective stride is stride in records ×

record size in words. For the OptVec case, the effective stride is simply the stride in

records since the records are not laid out contiguously. Therefore, OptVec suffers from

bank conflicts less frequently than the other two cases. However, Stream outperforms

OptVec for odd record sizes since the contiguous record access makes use of the 2-

word burst while OptVec only uses 50% of each burst for all strides > 1. For even

record sizes, the increased bank conflicts of Stream compensate for the reduced burst

utilization of OptVec, resulting in similar performance. Vector is affected by both

increased bank conflicts and 50% burst utilization resulting in poor performance.

Unutilized burst bandwidth shows up as a static offset from 100% normalized

bandwidth. For example, Vector and OptVec lose nearly 50% of the bandwidth due

to this reason for both cases shown in figure 3.10. Stream loses slightly less than 10%

of peak due to unutilized burst bandwidth in the case of StrideRL5. Note that the

bandwidth loss is slightly less than the fraction of unutilized burst bandwidth. This

is due to the fact that the memory system is not 100% utilized by Seq with a record

size of 1, to which these results are normalized, because only one of the two address
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sequencers are used in these microbenchmarks.

The gradual reduction in bandwidth with increasing stride results from fewer

column accesses per row activation. This effect is not visible for Stream in StrideRL2

at short strides since the memory system bandwidth is sufficient to saturate the

address bandwidth for these cases. Note that this drop-off is proportional to the

effective stride, and stabilizes when each row activation yields only a single data

element (the figures do not extend to large enough strides to show stabilization).

Strided OptVec performance is insensitive to record size since it does not affect the

effective stride.
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Figure 3.10: Uncached strided access performance under Stream, Vector, and Opti-
mized Vector accesses as stride varies (normalized to Seq with 1-word records)

Figure 3.11 shows the performance of StrideCRLn for n = 2 and 5. Similar to

the sequential access microbenchmarks, the main difference in these results compared

to the uncached case is the significant improvement in Vector performance as cache

lines capture spatial locality. With the addition of caching, Vector often outperforms

OptVec. This demonstrates the drawback of vector-optimized data layout for strided

accesses in the presence of a cache as discussed in section 3.2.1.

Figure 3.12 shows the performance of IndirectRLn for n = 2 and 5 for access

patterns of varying sparseness. The sparseness of the access pattern is varied by

changing the size of the address range within which the pseudo-random accesses

fall. Achieved bandwidth declines as the sparseness of accesses increase causing more

frequent row activations. Stream and Vector have no strong dependences on record
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Figure 3.11: Cached strided access performance under Stream, Vector, and Optimized
Vector accesses as stride varies (normalized to Seq with 1-word records)

length since the access pattern is essentially (pseudo)random over the entire address

range. OptVec performance, however, improves slightly with larger record sizes. This

results from the fact that each of the constituent vectors of the OptVec access falls

within an increasingly narrower range of addresses as record size increases (i.e. 1/r

of the overall address range, where r is the record length), reducing the sparseness of

the access pattern.
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Figure 3.12: Uncached indirect access performance under Stream, Vector, and Opti-
mized Vector accesses as the sparseness of the access pattern varies (normalized to
Seq with 1-word records)
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Figure 3.13 shows the performance of IndirectCRLn for n = 2 and 5. The dif-

ferences between Stream, Vector, and OptVec are much narrower in this case relative

to the uncached case of figure 3.12. The differences are particularly small when the

accesses are to small ranges of addresses which lead to higher cache hit rates. The

higher bandwidth of the cache obscures differences in DRAM performance among

Stream, Vector, and OptVec on cache hits. Bandwidth declines and performance dif-

ferences emerge between the three access types with increasing sparseness in the case

of IndirectCRL2 as cache hit rates drop. Stream and Vector outperform OptVec for

sparse accesses by exploiting record locality captured in cache lines. However, as

with the uncached case, OptVec performance improves with longer record sizes as

each vector access falls within a narrower address range.
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Figure 3.13: Cached indirect access performance under Stream, Vector, and Optimized
Vector accesses as the sparseness of the access pattern varies (normalized to Seq with
1-word records)

3.2.4 Application Performance

The overall performance of several application benchmarks under Stream, Vector,

and OptVec accesses are studied in this section. Table 3.5 describes the benchmarks

and table 3.6 summarizes the distribution of memory accesses performed by each

benchmark. Figure 3.14 shows execution time for the application benchmarks under

Stream, Vector, and OptVec accesses with and without caching, normalized to the
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uncached Stream case. For FFT 2D, FEM 3D, MD, and IGraph, caching is used

selectively to exploit temporal locality present in their accesses. FFT 1024 and Depth

do not exhibit temporal locality and caching is used for capturing spatial locality of

record accesses.

Media/Signal Processing Benchmarks

FFT 1024
1024-point FFT. Memory accesses are dominated by sequential
accesses to short (2-word) records

FFT 2D
64x64 2D FFT. Performs a mix of sequential, non-unit stride,
and indirect accesses to short (2-word) records. Array padding
is used to reduce memory bank conflicts

Depth
Stereo depth extraction. Memory accesses are dominated by
sequential accesses to 1-word data elements

Scientific Computing Benchmarks

FEM 3D
Finite element application designed for solving systems of first
order conservation laws on general 3D unstructured meshes.
Most accesses are to medium (5-word) or long (20-word) records

MD
Molecular dynamics simulation based on GROMACS
[vdSvBA+01]. Memory accesses are dominated by indirect
accesses to long (9-word) records

IGraph S/D

Parameterized synthetic benchmark that models inter-node in-
teractions in 2D and 3D irregular graphs. The S version simu-
lates a sparse graph (average graph degree 4). The D version
simulates a dense graph (average graph degree 16). Most mem-
ory accesses are sequential or indirect to medium-sized (4-word)
records

Table 3.5: Application benchmarks used to evaluate memory system performance of
stream and vector accesses

Uncached Results

As expected, applications dominated by 1-word data types, such as Depth, show no

appreciable performance variation between stream and vector accesses. Vector per-

forms poorly for all other benchmarks due to its inability to exploit the spatial locality

in multi-word record accesses. OptVec performs significantly better than Vector, but

underperforms Stream for all benchmarks. In the absence of caching, Stream ac-

cesses lead to speedups averaging 34% and 81% over Vector accesses for media and

scientific benchmarks respectively. Stream accesses also lead to speedups averaging
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Stream & OptVec Vector

Unit Non-unit Indirect Unit Non-unit Indirect
Stride Stride Stride Stride

FFT 1024 89 0 11 5 84 11
FFT 2D 50 25 25 0 75 25
Depth 83 0 17 83 0 17
FEM 3D 44 0 56 3 41 56
MD 10 0 90 10 0 90
IGraph S 46 0 54 14 32 54
IGraph D 28 0 72 18 10 72

Table 3.6: Memory access pattern distribution of benchmarks (percentages)
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Figure 3.14: Application performance under Stream, Vector, and Optimized Vector
accesses (normalized to the uncached Stream case)

9% and 27% over OptVec for the same application classes. The above results also

demonstrate the potential of data layout optimizations in improving vector access

performance as OptVec significantly outperforms Vector. However, these results were

generated assuming that data can be liberally reordered to optimize for vector ac-

cesses. In reality, optimizations for vector accesses maybe at odds with scalar accesses

to the same data in non-data-parallel sections of applications. Such scalar accesses

typically rely heavily on cache lines capturing spatial locality for good performance.
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Negative effects on scalar accesses and other limitations to reordering are not re-

flected in these results as only the data parallel portions of the codes were simulated

for these results. Therefore, in realistic implementations, practically achievable vector

performance will fall between Vector and OptVec performance shown above. Stream

accesses, on the other hand, achieve high performance without the need for data re-

ordering. It is conceivable, however, that some computations may not consume many

fields of each record, reducing the effectiveness of stream accesses. Although this case

was not encountered in the benchmarks studied, in extreme such scenarios, stream

accesses can be degenerated to vector accesses, and hence perform no worse.

Cached Results

Again, Depth is insensitive to the ordering of accesses, as before, and does not ben-

efit from caching since there is no temporal locality in the memory accesses. FFT

1024 also has no temporal locality in the memory accesses, but the addition of the

cache helps improve Vector and OptVec performance. All other benchmarks con-

tain some amount of temporal locality in the memory accesses that lead to improved

performance for all access patterns with the addition of a cache.

Stream accesses provide only small performance benefits over Vector and OptVec

for the media benchmarks (average speedups of 5.5% and 1.5% respectively) when

caching is introduced. However, for the scientific applications with longer record sizes

and more complex access patterns, Stream achieves speedups averaging 34% and 11%

over Vector and OptVec respectively, even with cached accesses.

Impact of Technology Scaling

Some of the differences in memory system performance are hidden by computation

overlapped with memory accesses. However, based on VLSI trends, compute resources

have been scaling more rapidly than memory bandwidth. In order to understand the

implications as the sustainable memory bandwidth to computation ratio decreases,

the limiting case where computation takes zero time was simulated, causing all ap-

plications to be memory-bound. These results are shown in figure 3.15. The memory

and cache parameters used for this study are the same as those listed in table 3.2.
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Figure 3.15: Application performance under Stream, Vector, and Optimized Vector
accesses in the limiting case where computation is instantaneous (normalized to the
uncached Stream case)

Relative performance of stream and vector accesses for the media and signal pro-

cessing benchmarks show only minor variations from the results in figure 3.14. How-

ever, the scientific benchmarks show greater variations due to increased reliance on

memory performance. For the scientific benchmarks, Stream outperforms Vector by

70% to 94% without caching and by 20% to 74% with caching1. Stream also outper-

forms OptVec by 3% to 60% without caching and by 12% to 30% with caching.

In summary, record granularity data access, as is done with stream accesses, leads

to more efficient utilization of the available memory bandwidth compared to word

granularity accesses. This advantage is particularly significant in the presence of large

data records which lend some spatial locality to the stream accesses even though

the application-level access patterns may be strided or irregular. This advantage

becomes even more prominent as technology scaling makes memory system bandwidth

increasingly scarce relative to on-chip compute capabilities.

1We were unable to generate Vector results for FEM 3D due to an incompatibility with the
technique used to emulate instantaneous execution of computations.
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3.2.5 Sensitivity to System Parameters

Several microbenchmark studies were used to determine sensitivity to DRAM burst

length and cache line size, and an interesting subset is presented and discussed below.

The benchmarks are the same as in section 3.2.3 unless otherwise noted. Throughout

this subsection the notation < b, t, c > will be used to denote the combination of

memory burst size b, memory transfer width t, and cache line size c (all in terms of

64-bit words). All other system parameters are held the same as those listed in table

3.2 except where noted otherwise. Only cached results will be presented for brevity

since the relationship between cached and uncached results can be inferred from the

discussion in section 3.2.3.

Impact of Long DRAM Bursts and Cache Lines

Figure 3.16(a) shows the performance of StrideCRL2 for the < 4, 2, 4 > case. The

main difference compared to the < 2, 2, 2 > case of figure 3.11(a) is the approximately

50% reduction in effective bandwidth for non-bank-conflict cases of stride > 1 for all

three access types. This is due to the additional memory traffic generated for accessing

4-word bursts while only 2 words in each burst are useful for all non-unit strides. The

second key difference relative to < 2, 2, 2 > is the reduced frequency of bank conflicts.

Since addresses are distributed over the memory banks at a granularity equal to the

burst size, bank conflicts, which occur when the effective stride is an even multiple of

the burst size, occur less frequently.

Figure 3.16(b) shows the performance of StrideCRL5 for < 4, 2, 4 >. The effects

described for StrideCRL2 are visible here as well. Effective bandwidth is reduced due

to unused memory traffic that result from the long bursts and cache lines. However,

Stream and Vector bandwidth is improved relative to StrideCRL2 since a higher

percentage of the accesses contain useful data (StrideCRL5 achieves 62.5% burst

utilization since 5 words out of 2 bursts are useful, compared to 50% utilization for

StrideCRL2 ). OptVec performance is independent of record size, and achieves only

minimum utilization of one word per burst or cache line for all strides equal to or

larger than the burst or cache line size.

Figure 3.17 shows the performance of IndirectCRL2 and IndirectCRL5 for <
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Figure 3.16: Cached strided access performance StrideCRLn < 4, 2, 4 > (normalized
to Seq < 2, 2, 2 > with 1-word records)

4, 2, 4 >. IndirectCRL2 performance is degraded at sparse access patterns for Stream,

Vector, and OptVec compared to < 2, 2, 2 > due to the added bandwidth imposed by

longer DRAM bursts which are not fully utilized by the short records. In the case

of IndirectCRL5, Stream and Vector performance is improved relative to < 2, 2, 2 >

due to the added spatial locality captured by the longer cache lines and reduced

probability of bank conflicts. However, OptVec performance is degraded due to the

low utilization since a cache line access may contribute only a single useful word at

sparse access patterns.
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Figure 3.17: Cached indirect access performance of IndirectCRLn < 4, 2, 4 > (nor-
malized to Seq < 2, 2, 2 > with 1-word records)
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In summary, longer DRAM bursts and/or cache lines result in low utilization of

the available bandwidth during accesses to data elements that are short or are not a

multiple of the burst/cache line size. This impact is visible in all three access types

considered. This result is not unexpected, and agrees with prior studies on vector

caches such as [KSF+94]. However, in the presence of long records, Stream is able

to achieve higher utilization of long DRAM bursts and cache lines. Vector requires

cached access to achieve similar benefits, and OptVec cannot leverage the long record

sizes to improve utilization even in the presence of a cache.

The general trend in commodity DRAMs over time have been towards longer

bursts. For example, while DDR SDRAM supported a minimum burst length of

2 words, DDR2 SDRAM only support a minimum burst of 4 words. Therefore, the

advantages of stream order memory accesses are likely to increase in future generations

of commodity DRAMS.

Impact of Short DRAM Bursts

While short DRAM bursts and cache line sizes lead to better utilization of bandwidth,

burst accesses are a critical element of achieving high bandwidth in modern memory

systems. Figure 3.18(a) shows the performance of StrideCRL2 for < 1, 1, 1 > (i.e.

without using multi-word burst accesses from DRAM). The achieved bandwidth of

this case is lowered due to the fact that the peak bandwidth available from the 16

DRAM banks is reduced. In addition, due to data interleaving among banks at

the granularity of a burst, bank conflicts occur at all even strides for Stream and

OptVec. Vector incurs bank conflicts for all strides > 1 due to the effective stride

always being an even multiple of the interleave factor due to the 2-word record size.

Similar inefficiencies are observed for StrideCRL5 for < 1, 1, 1 > in figure 3.18(b).

Therefore, while short burst and cache line sizes are preferred from a bandwidth

utilization perspective, memory system designers must balance that with the high

DRAM bandwidth enabled by longer burst sizes.
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Figure 3.18: Cached strided access performance of StrideCRLn < 1, 1, 1 > (normal-
ized to Seq < 2, 2, 2 > with 1-word records)

3.2.6 Discussion

Results presented in this section indicate that record granularity access of data

streams improve memory system performance relative to word granularity accesses.

In addition, stream programming explicitly decouples memory accesses from compu-

tation, allowing the programmer and/or compilation system to structure memory ac-

cesses independently of computation. As a result, stream processor implementations

expose memory system control to the software subsystem through the instruction set

architecture.

On traditional vector architectures, decoupling of memory transfers from com-

putation is only done for latency tolerance and not for optimizing memory system

performance. With the addition of more explicit decoupling of memory transfers

from computation, however, vector architectures can be adapted to perform mem-

ory transfers at record granularity, achieving the benefits seen in stream processors.

Some recent research in vector architectures have evolved in this direction. For exam-

ple, [BKGA04] describes the use of two-dimensional prefetches in to on-chip caches,

which mimics a subset of the record-granularity memory access capabilities present

in stream processors.
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3.3 Multi-threaded Architectures

The granularity at which the parallel computation is expressed in multi-threaded

architectures depends on the frequency of context switches. A continuum of possibil-

ities exist for implementable context switch frequencies, and in order to simplify the

analysis, we will consider the two opposing extreme design points to establish bounds

on the intervening design points.

One extreme design point is a single multi-threaded processor that switches con-

texts every cycle. Such a policy leads to memory access patterns identical to a vector

architecture with vector length Nt, where Nt is the number of thread contexts avail-

able in hardware. Current implementations of architectures that support multiple

thread contexts provide a fixed number of physically distinct registers for each con-

text. Therefore, the intermediate register requirements of such an architecture are

also identical to a vector architecture of vector length Nt since intermediate state

for all active threads must be maintained. Note that Nt is determined to provide

sufficient latency tolerance to cover off-chip memory accesses.

The opposite extreme design point is a multi-core processor where each core ex-

ecutes a single thread to completion before switching to another thread. Such an

architecture’s memory accesses and register requirements are identical to a stream

processor with Nc compute clusters, where Nc is the number of cores in the multi-

threaded processor. Note, however, that such an implementation cannot rely on

context switches to effectively overlap long latency memory accesses with computa-

tion, and therefore requires additional mechanisms to ensure long latency memory

accesses are minimized through aggressive prefetching.

More complex implementations of multi-context processors, such as those that

switch contexts on a subset of memory accesses (e.g. on cache misses), simultaneous

multi-threading [TEL98] etc., lead to memory access patterns that fall between the

two bounds expressed by the two simple extremes discussed above. However, the

unpredictable nature of context switches in such architectures implies that register

capacity must be provisioned to support the intermediate state of all live contexts,

approximating those of a vector architecture with vector length Nt. As Nt approaches

the vector lengths of traditional vector architectures (e.g. 64 to 256), the capacity
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requirements approach that of vector architectures while proving a large numbers

of contexts to cover memory access latencies. Alternatively, as Nt approaches the

number of compute clusters in stream processors (e.g. 8 to 16), register capacity re-

quirements approximate those of stream processors, but require aggressive prefetching

as the number of contexts alone is insufficient to cover long memory latencies.

3.4 Summary

This chapter evaluated the efficiency of expressing data parallelism at record granu-

larity as is done in stream processing relative to expressing the data parallelism at

word granularity as is done in vector processing. The evaluation consisted of two

main parts - register capacity requirements and memory system performance.

Register capacity requirements were evaluated using an analytical model. The

record granularity expression of data parallelism was shown to require significantly

fewer registers to hold intermediate state compared to the word granularity case.

This was largely due to the fact that in the case of word granularity, all intermediate

results are expanded by the length of the input vector(s). In the record granularity

case, intermediate results are only expanded by the number of parallel execution

units, leading to lower register requirements.

Memory system performance was evaluated using a set of micro- and application-

benchmarks. Record granularity expression of data parallelism leads to contiguous

access within data records, leading to better utilization of DRAM burst accesses

and cache lines. Word granularity data parallelism results in vector accesses that

do not exploit the spatial locality of record-order data layout in memory, leading to

inefficient use of DRAM capabilities. One technique for reducing this inefficiency is

the use of an on-chip cache with multi-word cache lines to capture record locality.

However, this requires caching vector accesses that may not exhibit temporal locality,

potentially leading to cache pollution (i.e. evicting data that does have temporal

reuse). Alternatively, vector performance can be improved by reordering data layout

in memory to optimize for vector accesses. However, such layouts can be inefficient

for sparse access patterns with multi-word DRAM bursts or cache lines, as well as for

data that requires both vector and scalar accesses.



CHAPTER 3. GRANULARITY OF DATA PARALLELISM 56

Across a set of media and scientific benchmarks, execution using stream order

accesses was found to outperform the same computation with vector order accesses

by an average of 45% when not using an on-chip cache. With an on-chip cache, stream

accesses were found to outperform vector order accesses by 22% on average. Even

with the data layout in memory reordered to optimize for vector accesses, stream

access lead to speedups of 13% and 7% on average without and with an on-chip cache

over the same set of benchmarks.

The impact of two scaling trends on memory system performance was also con-

sidered. First, as on-chip computation resources continue to scale more rapidly than

off-chip bandwidth, the performance benefits of record granularity access over word

granularity access was found to improve, especially for applications with long record

sizes and irregular access patterns. Second, stream performance was also found desir-

able as DRAM burst lengths increase, which has been the recent trend in commodity

DRAMs.



Chapter 4

Communication Hierarchy

The objective of the bandwidth hierarchy of a data parallel processor is to capture as

much data reuse at the high-bandwidth levels, closer to the compute units, as possible.

However, as a result of mapping applications to parallel execution hardware, a subset

of the available data reuse is converted to spatial communication. A trivial example of

this effect is shown in figure 4.1. In 4.1(a), the value A is generated in one part of the

application and is consumed by a later part, resulting in producer-consumer reuse

over time. However, after parallelization of the application over two processors as

shown in 4.1(b), the locality is transformed in to spatial communication. Supporting

this communication, therefore, becomes critical to capturing the data reuse in the

parallelized execution of applications.

Mem

Proc

A

(a) Uniprocessor execution

Mem

Proc

Mem

Proc

A

(b) Parallelized execution

Figure 4.1: Parallelization transforms a subset of temporal reuse to spatial commu-
nication
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This chapter analyzes the temporal and spatial communication requirements of

stream processors. The spatial communication resources in current stream proces-

sors are limited to the LRF and memory levels of the bandwidth hierarchy. These

resources are shown to be inefficient for capturing stream-level data reuse present in

complex access patterns found in some data parallel application classes. This chapter

also explores techniques for enabling a complete communication hierarchy with ap-

propriate resources at each level of the bandwidth hierarchy. Specifically, an indexed

SRF architecture is proposed that enables communication at the stream level. This

novel SRF is demonstrated to achieve significant reductions in memory bandwidth

demands as well as performance gains for a variety of complex stream access pat-

terns. As a result, this design enables a broader class of data parallel applications to

be executed efficiently on stream processors.

4.1 Communication in Time: Data Reuse

Temporal reuse occurs at both the kernel and stream levels for applications expressed

in the stream programming model. At the kernel level, all intermediate data are

represented as scalar variables, and hence the reuse occurs at the granularity of single

words. The reuse available at this level can be classified into two types:

• Temporal locality : stream data values that are read from the SRF, and are

referenced multiple times within the execution of a single kernel.

• Producer-consumer locality : intermediate results that are generated during a

kernel’s execution, and are consumed later during the same kernel.

At the higher, application level, data are represented as streams composed of tens

to thousands of words. Therefore, the data reuse at this level can be categorized

based on both the type and the granularity as follows:

• Stream temporal reuse: Streams that are read in from memory that are con-

sumed multiple times at the granularity of the entire stream, in the same se-

quence each time.
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• Irregular temporal reuse: Stream data that are read from memory and are reused

multiple times, but the reuse occurs in a different sequence from the order of

the original access. Further, the reuse may only apply to a subset of the data

in a stream. This reuse may be intra-stream, where the same data is referenced

multiple times within a single stream, or inter-stream, where the reuse occurs

in multiple streams.

• Stream producer-consumer locality : Streams that are generated during the exe-

cution of a kernel, and are consumed by one or more later kernels of the same

application. The consumption of the stream occurs in the same sequence it was

generated in.

• Irregular producer-consumer locality : Stream data that are generated during

the execution of a kernel, and are consumed by one or more later kernels of the

same application. The consumption of the stream occurs in a different sequence

than the one it was generated in.

4.2 Communication in Space: Resources and Con-

straints in Stream Processors

Kernel level reuse is captured in the LRFs within compute clusters as described in

section 2.3.1. The spatial communication requirements at this level arise due to the

two levels of parallel computation – multiple units within each compute cluster and

multiple clusters. Communication among the units of a cluster is supported via the

intra-cluster network, and communication among compute clusters is supported via

the inter-cluster network as described in section 2.3.

Stream level communication is expected to be captured at the SRF as described in

section 2.3.1. The communication requirements at this level arise due to three sources:

the presence of multiple independent data elements within a stream, the partitioning

of the SRF into multiple banks, and the strip-mining of data sets. Therefore, stream

locality, when mapped to the hardware implementation, requires three degrees of

communication freedom to be fully captured:
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• In-lane: communication among stream elements (possibly from multiple

streams) that are mapped to the same SRF bank and are within the same

strip. This often corresponds to irregular reuse of stream elements within a

single lane.

• Cross-lane: communication among stream elements (possibly from multiple

streams) within the same strip mapped to different SRF banks. This often

corresponds to irregular reuse within a strip of an application.

• Cross-strip: communication among stream elements from different strips. This

often corresponds to irregular reuse over the global data set of an application.

The SRF implementation of current stream processors severely restricts all three

degrees of communication freedom at the stream level. In order to sustain high band-

width from the SRF, a block of b contiguous words are read or written on each access

to an SRF bank. To ensure these block accesses yield useful bandwidth, all stream

accesses to the SRF are constrained to be performed in the same sequence in which

the stream is stored in the SRF. This sequential access restriction prevents in-lane

communication. In addition, as can be seen from figure 2.3, no cross-lane communi-

cation network exists at the SRF level. Similar constraints apply to vectors in the

VRF of vector architectures as well. While a few vector architectures support a very

small number of fixed communication patterns on vectors in the VRF (e.g. permute

operations in V-IRAM for reductions and FFT butterfly patterns [Koz02]), arbitrary

communication among elements of a vector already in the VRF is not supported1.

As a result of the sequential access restriction, current stream processors only

capture temporal or producer-consumer reuse at stream granularity at the SRF level

of the bandwidth hierarchy. Capturing irregular reuse among data within one bank of

the SRF requires in-lane indexed access – arbitrarily ordered access within each lane

of the processor. Capturing irregular reuse among data mapped to different banks of

the SRF requires cross-lane indexed access – arbitrarily ordered access to any bank

of the SRF from any cluster.

1A subset of reorderings among elements of a stream or vector may be achieved via conditional
masking operations[SFS00; KDR+00]. These operations, however, are inefficient, requiring multiple
passes of the data through the SRF or VRF and sustaining only a fraction of the normal stream or
vector access bandwidth.
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Cross-strip data reuse occurs due to partial overlaps between the stream state of

different strips of an application’s data set. Given that stripmining is done due to

data sets being too large to fit in the LRF/SRF register hierarchy, this reuse can

often be captured only at the memory system level of the bandwidth hierarchy.

4.2.1 Alternatives to SRF-level Communication

Irregular stream-level reuse that cannot be captured in the SRF can be transformed to

use other levels of the bandwidth hierarchy. One option, therefore, is to convert that

reuse to kernel level communication. For in-lane communication, the stream data is

read in-order from the SRF into the LRFs within the lane, and is permuted over the

intra-cluster network. For cross-lane communication, the stream data is read in-order

from the SRF in to the LRFs, and communicated via the intra- and inter-cluster

networks. However, converting stream level reuse to the kernel level extends the live

range of data in the LRFs, artificially increasing LRF capacity requirements. Since

LRFs are optimized for high bandwidth with low capacity, this approach reduces the

effectiveness of the two-level register hierarchy. Further, in realistic implementations,

converting irregular stream locality to kernel locality is often not an option since the

LRF capacity is insufficient to hold any significant amount of stream data along with

the intermediate state of kernel execution(s).

A second option is to convert irregular stream-level reuse to memory-level reuse.

In this case, any stream data requiring in-lane or cross-lane communication are writ-

ten to the memory system, and read back in the desired new permutation. Exposing

stream locality to the memory system is always possible, and is often the only realistic

option in current stream processors. However, the bandwidth of the memory system

is significantly lower than that of the SRF, and exposing locality that can be cap-

tured at the SRF to the memory system reduces the effectiveness of the bandwidth

hierarchy. Further, in cases where intra-stream irregular reuse exists, multiply refer-

enced data elements are replicated in the SRF in order to conform to the sequential

access pattern. This data replication in the SRF exacerbates capacity limitations for

applications with large data sets, increasing the number of strips required compared

to a solution that avoids replication. For such applications, overheads of starting
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and finishing a strip, such as priming and draining of software-pipelined loops and

initialization code, are incurred a greater number of times in the presence of data

replication in the SRF, increasing execution times.

A third option is to introduce an additional memory structure that supports flexi-

ble communication patterns. For example, the Imagine processor contains a 256-word

scratchpad memory in each lane [RDK+98]. However, these scratchpads can only ac-

commodate a small amount of data, and provide lower bandwidth than the SRF.

Further, such memories often require data to be transferred from off-chip memory to

the SRF, and then from the SRF to the scratchpads before arbitrary accesses can be

performed, incurring the bandwidth overhead of additional data transfers.

4.2.2 Application Examples

In order to illustrate the inefficiency of converting stream level locality to other levels

of the bandwidth hierarchy, this section explores a few simple application examples.

Multi-dimensional Array Accesses

Accesses along different dimensions of a multi-dimensional array can be supported

efficiently by capturing irregular stream locality in the SRF. Many signal processing

applications with two- or higher-dimensional data sets require such operations. For

example, consider the simplified 2D FFT shown in figure 4.2. The first invocation of

the 1D FFT kernel generates an intermediate result array in row-major order. The

second kernel invocation needs to apply the algorithm along the columns, requiring a

reordering of the array. With sequential SRF access, this requires writing the entire

array to memory and re-reading it in column-major order as shown in figure 4.2(a).

However, indexed SRF access allows the column-major access to take place directly

from the SRF as illustrated by figure 4.2(b).

Neighborhood Accesses in Multi-Dimensional Arrays

Accessing data neighboring a given element in a multi-dimensional data structure

using sequential accesses requires adjacent values in all dimensions to be contiguous

within the stream. A simple 2D example of such a case is shown in figure 4.3, where a
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Figure 4.2: Irregular stream access in 2D FFT

3x3 filter kernel is applied to the row shown in gray. Applying the filter to subsequent

rows requires reordering the data set. Avoiding this reordering with only sequential

SRF access requires retaining 3 rows of the image in LRFs, converting stream level

communication to the kernel level2. Arbitrary SRF access makes it trivial to perform

2The simple 3x3 filter case discussed in this example can be efficiently implemented even using
a sequentially accessed SRF by maintaining each row as a separate stream. However, that imple-
mentation does not scale to larger filters or higher dimensions as each 1-D row requires a separate,
concurrently active stream, and the number of concurrent streams are often limited by hardware
constraints in stream processors.
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the neighbor accesses by capturing the reuse in the SRF. Operations such as these

are common in some classes of scientific simulations with regular grid structures and

in various filters and solvers.
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Figure 4.3: Neighborhood access in 2D array

Neighbor Access in Irregular Graphs

Accessing neighbors of nodes in irregular graph structures using sequential streams

result in nodes that neighbor multiple other nodes being replicated as shown in figure

4.4. Exploiting this intra-stream irregular temporal locality at the SRF reduces mem-

ory traffic by eliminating redundant fetches and reduces the space occupied in the

SRF by eliminating replicated copies. Application classes with such accesses include

scientific applications with irregular structures and some graph traversal algorithms.

Table Lookups

Data-dependent table lookups are used in a variety of applications for algorithmic

reasons as well as for storing pre-computed values as an optimization. With a sequen-

tially accessed SRF, these accesses require indexed gather operations from memory

as described in section 2.2. With indexed SRF access, lookups can be performed in

the SRF if the table or a useful partition of it can fit in the SRF.

Conditional Accesses

Conditional control flow is an expensive operation in stream and other SIMD pro-

cessors, and is often translated into conditional data accesses in order to improve
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Figure 4.4: Neighbor access in irregular graphs

efficiency [SFS00; KDR+00]. Conditional stream accesses without SRF indexing re-

quire communication among lanes as data statically mapped to SRF banks must be

accessed sequentially and distributed among clusters based on dynamically evaluated

conditions. In some cases, however, conditional computation of SRF indices provides

an alternative for expressing conditionals with greatly reduced cross-lane communi-

cation requirements, as in the sort benchmark that will be described in section 4.3.5.

Other Uses

Indexed access to the SRF also enables a number of resource constraints to be relaxed

through virtualization. One example is the ability to spill long-lived intra-kernel LRF
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state to the SRF. With a sequentially accessed SRF, LRF spilling is severely restricted

since the data must be read back in the same order it was spilled. Therefore, kernels

that require more intermediate state than available physical LRF space can only be

supported via splitting to multiple kernels. While kernel splitting is an elegant solu-

tion in such cases, compilation technology for performing this optimally has only been

demonstrated for linear filters [LTA03] – a small subset of the streaming application

space. Indexed SRF access enables automated compilers to support kernels with large

amounts of intermediate state through flexible spilling of long-lived LRF state to the

SRF for any streaming application.

A second set of resources that may be virtualized via indexed SRF access are the

stream buffers. With sequential SRF access, each SB is statically allocated to a single

stream. This is required since the SB internally maintains the stream state (i.e. next

location in the SRF to access), and the block accesses from the SRF prohibit fine-

grain interleaving of data from multiple streams over a single SB. However, this also

limits the number of streams that a single kernel can consume and generate to be no

greater than the number of hardware SBs. With indexed access, multiple streams can

be multiplexed over a smaller number of SBs, again enabling the compiler to support

kernels that exceed physical resource constraints (a detailed discussion of how indexed

SRF access uses SBs and other hardware resources will be presented in section 4.3).

4.2.3 SRF-Level Bandwidth Requirements

The bandwidth requirements and performance potential of enabling SRF-level com-

munication can be analyzed by a simple model that expresses an application’s execu-

tion time as limited by some level of the bandwidth hierarchy. Consider an application

whose execution time is limited by the memory system bandwidth or the SRF band-

width. The necessary condition for SRF-level communication to provide a speedup

for such an application is expressed in equation 4.1. wS and wI are the number of

words of sequential and indexed accesses performed by the compute kernels at the

SRF level respectively. p is the fraction of wS that must be read from or written

to the memory system for reasons other than SRF-level communication. M , SS and

SI are the sustained bandwidths of the memory system, sequential SRF access, and
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SRF-level communication respectively. The left side of the inequality, therefore, is

the time spent in memory system accesses if no SRF-level communication is sup-

ported and that communication is exposed to the memory system. n is 2 for irregular

producer-consumer reuse since the data must be written to memory from the SRF,

and than read back in a different order, and is 1 for irregular temporal reuse. The

right hand side of the inequality is the time spent on SRF accesses with support for

indexed accesses at that level. Note that this simple model does not characterize ap-

plications that are constrained by compute rather than bandwidth requirements, but

such applications can tolerate inefficient use of the bandwidth hierarchy and hence

are not relevant to this analysis.

pwS + nwI

M
>

(1 + p)wS

SS

+
wI

SI

(4.1)

Let f = wI

wS+wI

be the fraction of SRF accesses that are indexed. Also, let the ratio

of sequential SRF bandwidth to memory system bandwidth (SS/M) be W . Therefore,

the necessary sustained bandwidth of indexed SRF accesses relative to the memory

system bandwidth to achieve an application speedup is shown by the expression in

4.2.

SI

M
>

Wf

W (p + (n − p)f) − (1 + p)(1 − f)
(4.2)

Figure 4.5 shows a plot of the necessary indexed SRF to memory bandwidth ratio

in order to achieve a speedup as a function of f , with W = 10 and n = 1. The value

of 10 for W is based on the approximately order of magnitude increase in bandwidth

at each level of a streaming memory hierarchy. Note that the inequality of expression

4.2 is undefined at very low values of p and f where the sequential SRF access time

exceeds the memory access time.

Figure 4.5 shows that little or no bandwidth multiplication over the memory

system is needed for improved performance through indexed SRF access for most

values of p and f . As can be expected, at very low memory system utilizations (i.e.

very low p), a higher indexed SRF bandwidth is needed in order to achieve a speedup.

However, even with p and f as low as 10% each, less than 10% bandwidth increase in

indexed SRF accesses over the memory system is needed to achieve a speedup. When
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Figure 4.5: Required ratio of indexed SRF to memory system bandwidth in order
to achieve application speedup based on model of application performance as being
limited by memory or SRF bandwidth

the memory system is heavily utilized (e.g. p of 25% and 50% lines of the plot),

indexed SRF access can provide a speedup by reducing the load on the memory

system even if the indexed SRF bandwidth is lower than the memory bandwidth.

4.3 A Stream Register File with Indexed Access

Supporting flexible communication at the SRF level can lead to a significant reduc-

tion in the inefficiencies that arise in the presence of irregular stream communication

as described in section 4.2.2. This section presents and evaluates an SRF architecture

that supports such flexible communication by allowing compute clusters to explicitly

specify the locations to be accessed. We start with a description of a sequentially

accessed SRF (base) implementation, and extend the design to support flexible com-

munication patterns.

4.3.1 Standard SRF Implementation

Figure 4.6 shows a high-level view of an 8-lane sequentially accessed SRF. Each SRF

bank is a single-ported SRAM and is accessed only by the cluster within the same lane
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as described in section 2.3.1. On each access, active streams arbitrate for access to the

single SRF port. The sequential access restriction enables important simplifications

in such an implementation. First, high bandwidth can be achieved by using a single

wide port into the SRF banks to read or write a block of b words on every access.

Second, coupled with the fact that the compute clusters also run in lock-step across

all lanes, the SRF access requirements are identical across all lanes. Therefore, a

single arbiter can be used for selecting which stream is granted access to the SRF

port in all lanes on a given cycle. Additionally, since all banks of the SRF access

the same location in this case, a single row address decoder can be shared among all

lanes, reducing hardware overheads.

S
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Bank 3Bank 0Bank 0

Global 
word-lines

Bank 7Bank 7Bank 4

Stream 
buffers

1 word

b words

Compute 
cluster 0

Compute 
cluster 3

Compute 
cluster 4

Compute 
cluster 7

Figure 4.6: Block diagram of sequentially accessed SRF with 8 banks

Each bank of the SRF has a capacity of 16KB (4K 32-bit words) and 64KB

(8K 64-bit words) respectively in the Imagine and Merrimac architectures [RDK+98;

DHE+03]. Such large capacity SRAMs are typically not implemented as a monolithic

array of memory cells. Instead, they are composed of several smaller SRAM arrays

(sub-arrays) that result in improved access latency and reduced access energy [AH00].

An implementation for a 16KB SRF bank composed of four sub-arrays is shown in

figure 4.7. The example shown in the figure assumes a 128-bit block access in each
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bank and 2:1 column multiplexing at the sub-array outputs. The outputs of sub-arrays

drive 128 shared “global” bitlines in each bank. During each access, a single sub-array

is activated in each bank, which provides the entire 128-bit block for that access. Since

only one sub-array is active within a bank at any one time, no additional arbitration

is necessary for access to the global bitlines. Finally, since the row decoding is shared

among all SRF banks, only a driver is needed within each bank for activating the

local word lines of the memory arrays.

Sub array 1Sub array 1

Sub array 2Sub array 2

Sub array 3Sub array 3

Local w
ord-line drivers

Sub array 0

256b
128b

Global 
bit-lines

Precharge

Sense
amplifiers

Sub-bank column
multiplexors
(2:1 shown)

Figure 4.7: A single bank in a sequentially accessed SRF. Bank capacity = 16KB,
block access = 128b, and array width = 256b as shown

4.3.2 In-lane Indexed Access

The next address to be accessed for a given stream is tracked internally by the stream

buffer (SB) associated with the stream in the base SRF implementation since the

access pattern is predetermined (i.e. sequential). In order to extend that design to
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support in-lane indexed access, application kernels executing on the compute clusters

must be allowed to explicitly specify the index of the next stream element to be

accessed. Therefore, a key requirement for enabling in-lane indexed SRF access is an

address path from the compute clusters to the SRF bank. Further, since access to the

SRF port is dynamically arbitrated, the address path must tolerate variable latencies

from address issue to access completion.

Figure 4.8 shows a high level view of the modifications to the SRF in order to

support in-lane indexed access. A set of address FIFOs are added to the SRF banks.

The corresponding address FIFOs across all lanes form a single logical address FIFO

associated with a single stream. Indices for indexed access to stream i are placed in

address FIFO i by the compute clusters. Address FIFOs are unused during sequen-

tially accessed streams, which operate similar to the base implementation. Stream

buffer i mediates data transfers between the clusters and the SRF for stream i during

both indexed and sequential accesses. The address FIFO and the SB provide toler-

ance for the variable SRF access latency. This enables multiple outstanding access

requests, which allows the computation in clusters to be statically scheduled using a

conservative estimate of indexed SRF access latency.
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Figure 4.8: Block diagram of an 8-bank SRF with in-lane indexed access

For indexed reads, once the addresses are placed in to the address FIFOs by the
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compute clusters, active streams arbitrate for SRF access. Once access is granted for

indexed stream i, the earliest pending index for that stream is accessed, and the data

is placed in stream buffer i. For SRF arbitration, a stream is considered active if it is

sequentially accessed or there are pending indices, and its stream buffer has sufficient

space to hold the data after the SRF access completes.

For indexed writes, clusters place the indices in the address FIFO and write the

associated data in to the corresponding stream buffer. Active write streams partic-

ipate in SRF arbitration along with the read streams. A write stream is considered

active if there is sufficient data in the stream buffer to perform an SRF access.

Since each cluster issues an independent index on indexed accesses, each bank of

the SRF may be required to access a different row of the memory array. Therefore,

the single shared row decoder is replaced by an independent row decoder in each bank

as shown in figure 4.8.

Improving Indexed Access Bandwidth

For irregular stream-level reuse, accesses at the granularity of individual words or

short records occur frequently in several application classes. Even in the case of long

record accesses, they are not guaranteed to be aligned with the b-word blocks that are

accessed using the single wide port of the SRF banks. Therefore, each indexed access

from the SRF, in the worst case, yields one useful data word compared to the b words

accessed during sequential accesses, leading to a potential bandwidth reduction by a

factor of b for indexed accesses.

The internal structure of the SRF banks, which consist of multiple sub-arrays, can

be leveraged to improve indexed access bandwidth. Instead of performing a single,

b-word-wide block access from one sub-array per cycle, the same bandwidth can be

achieved by performing a one-word access from b sub-arrays each cycle. Barring bank

conflicts, this enables high bandwidth for both sequential and indexed accesses. The

key modifications necessary to support such accesses are as follows:

• A row decoder per sub-array : Since each sub-array must perform an independent

access simultaneously, a dedicated row decoder must be implemented for each

sub-array.
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• Multiple addresses per SRF bank : b addresses must be issued to each bank of the

SRF in order to perform b concurrent accesses from each bank. Each address

requires an independent address bus in to the SRF bank from the address FI-

FOs (for indexed accesses) and/or centralized address generators (for sequential

accesses).

• Per-sub-array arbitration: In order to avoid bank conflicts among accesses from

multiple streams, an independent access arbitration must be performed for each

sub-array in each lane.

Retaining Energy Efficiency of Sequential Accesses

While the method of performing a single word access from multiple sub-arrays every

cycle achieves the desired bandwidth, it significantly increases the energy consumed

by the SRF for sequential accesses. Where b words are accessed for each sub-array

activation in the base design, b separate sub-arrays must be activated to access the

same number of words in the modified design. Therefore, the energy consumed by

sequential accesses is increased by almost a factor of b in the modified design. In order

to alleviate this drawback, the SRF bank implementation can be modified to support

either a single block accesses for sequential streams or multiple simultaneous sub-

array accesses for indexed accesses every cycle. Figure 4.9 shows a block diagram of

a single bank of an SRF that supports both these access types. The key modification

is the presence of two column multiplexers at the output of the sub-arrays, either of

which may drive the global bit-lines.

During a block access, a single sub-array is activated, and a b-word block of data

is accessed via the small degree column multiplexers. In the specific example shown

in figure 4.9, a 128-bit block is read via the 2:1 column multiplexers. In this case, all

128 global bit-lines are driven by the single activated sub-array.

During indexed accesses, up to b sub-arrays are activated subject to the number

of available indexed access streams and bank conflicts. Each sub-array drives a single

word of data on to a subset of the global bit-lines. The global bit-lines are statically

allocated to sub-arrays to avoid conflicts. In the specific example of figure 4.9, up to

4 sub-arrays drive 32 bits of data each on to disjoint subsets of the global bitlines.
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Figure 4.9: A single bank in a SRF with in-lane indexed access. Bank capacity =
16KB, block access = 128b, and array width = 256b as shown

On accesses where less than 4 subarrays are activated, only the bitlines with valid

data need to be driven, reducing energy consumed.

In order to support irregular temporal reuse, both indexed and sequential accesses

must sometimes be supported to the same data stream, potentially during different

stages of an application. Therefore, data distribution among the sub-arrays must

be managed in a manner that facilitates both forms of accesses. Figure 4.10 shows

the distribution of a stream of 2-word records among the banks and sub-arrays of the

SRF from the example organizations shown in figures 4.8 and 4.9 (i.e. 8 banks, 4 sub-

arrays per bank, and 4-word block accesses). Note that data records are interleaved

among banks of the SRF, and address bits determine the distribution of data among

sub-banks within a bank. Figure 4.11 shows the mapping of SRF address bits to the

different aspects of the data layout.
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Figure 4.11: In-lane SRF address bit mapping. Example shown for 4 sub-banks per
bank, and 128-bit block size (32-bit words)

Arbitration for SRF Access

In the indexed SRF implementation described above, arbitration for the SRF must

be performed at two levels. Since sequential streams are controlled by a unified

set of resources common to all lanes, any SRF access grants for such streams must

be uniformly enforced in all lanes. However, for indexed access, an independent

arbitration must be performed within each lane to achieve high utilization of the

available bandwidth. Therefore, the two-level arbitration is performed as follows:
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• Global arbitration: Select one active sequential stream or all in-lane indexed

access streams.

• Local arbitration: Select among active in-lane indexed streams for each sub-bank

independently in each lane. This arbitration may be performed speculatively

in parallel with the global arbitration to shorten the access pipeline, but is

overridden if a sequential stream is selected at the global level.

The dynamic arbitration for the SRF results in variable latency for the indexed

SRF accesses. Therefore, it is possible for accesses to not complete at the rate ex-

pected by the application, especially in the presence of high SRF bandwidth require-

ments or many sub-bank conflicts. While the buffering in the address FIFOs and

stream buffers tolerate some mismatch between the application’s access issue rate

and SRF access completion rate, extreme mismatches lead to stalling compute clus-

ters. Since all clusters execute in lock step, a stall condition in one cluster leads to

stalling all clusters. A cluster stall can occur due to one of the following cases:

• Stream buffer empty : A cluster read to stream i stalls if SB i is empty due to

previously issued reads not having completed.

• Stream buffer full : A cluster write to stream i stalls if SB i is full due to previous

writes not having drained to the SRF.

• Address FIFO full : A cluster read or write to in-lane indexed stream i stalls

if address FIFO i is full due to previously issued indexed accesses not having

been issued to the SRF.

Figure 4.12 shows an example of in-lane indexed SRF access. Only a single lane

and two streams are shown for simplicity. Figure 4.12(a) shows that in cycle i, the

cluster issues one access each to the two streams by placing addresses in the address

FIFOs. During local arbitration, both accesses A0 and A1 are determined to be to the

same sub-array and are serialized. The delayed A1 access is performed in cycle i + 1

along with other new or pending non-conflicting accesses as shown in figure 4.12(b).

The cluster stalls when it tries to read the data for the accesses issued in cycle i as the

data for access A1 are not available yet due to the conflict with A0. Figure 4.12(c)
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shows the cluster data access succeeding after the data for both streams are available.

In-lane indexed SRF access is shown as a single cycle operation in this example for

brevity. In reality, it is a pipelined multi-cycle operation.
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Figure 4.12: In-lane indexed SRF access example. Hardware and timing simplified
for clarity

The evaluations performed later in this chapter implement both the global and

local SRF arbitrations using round-robin allocation among active streams. More

elaborate schemes were studied (e.g. prioritizing streams likely to cause stalls due to

the SBs or address FIFOs being full or empty beyond a threshold) and was found to

provide only marginal improvements over round-robin arbitration despite significantly

increased complexity.

4.3.3 Cross-lane Indexed Access

Cross-lane indexed SRF access requires inter-lane communication resources in addi-

tion to the in-lane indexing capabilities described above. Figure 4.13 shows a block

diagram of the modifications necessary for supporting cross-lane indexed access. The

inter-cluster network that was used for LRF-level communication in the base architec-

ture is conceptually relocated to the interface between the compute clusters and the

SRF. Therefore, both LRF-level and SRF-level cross-lane communications are multi-

plexed over this single network. In order to communicate the indices during cross-lane

indexed SRF access, a dedicated address network is added as shown in figure 4.13. In
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order to reduce the number of ports in to the address network, all cross-lane indexed

stream addresses from any one cluster are issued over a single address FIFO.
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Figure 4.13: Block diagram of an 8-bank SRF with cross-lane indexed access

The cross-lane data traffic resulting from this implementation is comparable to

the conversion of stream-level communication to kernel-level as discussed in section

4.2.1. However, this implementation directly performs the stream-level communi-

cation from the SRF into the consuming cluster(s) without intermediate storage in

the LRFs. Therefore, the excessive LRF occupancy that was inefficient when such

communication was converted to the kernel level is avoided.

The bandwidth bottleneck for cross-lane communication lies in the inter- cluster

data network that sustains a single word per lane per cycle bandwidth. Multiplexing

LRF-level communication and cross-lane indexed SRF accesses over the same network

could potential exacerbate this bottleneck. However, these two types of accesses are

largely mutually exclusive in the benchmarks studied to date. Qualitatively, this be-

havior can be reasoned as follows. Kernel-level inter-cluster communication is used
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predominantly by applications that operate on regularly structured data where each

lane is “aware” of the data being operated on in the neighboring lanes at compile time.

However, cross-lane indexed access is useful in applications with data-dependent ir-

regular stream-level reuse where the data being operated on neighboring clusters are

dynamically determined, rendering statically scheduled register-to-register communi-

cation difficult.

An exception to the above reasoning on mutually exclusive communication types

is the presence of cross-lane indexed accesses along with conditional streams in some

applications with irregular data structures. Conditional stream accesses also gen-

erate inter-lane data traffic. A quantitative evaluation of cross-lane indexed SRF

performance in the presence of other inter-lane traffic is presented in section 4.3.8.

A potential complication of cross-lane indexed SRF access is the ordering among

multiple writes to the same location from different clusters. One option is to require

the software (application, compiler, and/or run-time system) to guarantee all writes

on cross-lane indexed streams to be non-conflicting. However, it is worth noting

that indexed SRF accesses, when used for capturing irregular temporal locality, do

not require any writes since these are always read streams. Indexed accesses for

irregular producer-consumer reuse do require writes, but such transactions can often

be restructured to write sequentially and perform the reordering during subsequent

reads. Therefore, the implementation evaluated in this chapter assumes cross-lane

indexed SRF access is used for reads only. However, the design can be trivially

extended to support writes, albeit without ordering guarantees.

Arbitrating Cross-lane Accesses

Cross-lane indexed access can be broken in to three phases. First, the indices must

be communicated from issuing clusters to the intended SRF bank. Second, the in-

dexed read must be performed at the intended SRF bank. Third, the data must be

communicated back to the cluster the request originated from. Each of these phases

introduces a potential new point of contention that must be dynamically arbitrated:

• Conflicts in the address network may arise due to multiple clusters issuing ad-

dresses simultaneously for the same target SRF bank
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• Conflicts at the SRF banks with pending in-lane accesses

• Conflicts on the data return due to multiple outstanding data requests from the

same originating cluster completing simultaneously in different SRF banks.

Arbitrating each of these phases separately improves resource utilization as each

is independently optimized. However, in order to simplify the implementation, the

cross-lane indexed implementation evaluated in this chapter assume a more limited

degree of flexibility. All arbitration is constrained to the address traversal and the

remainder of the cross-lane access is kept in lock-step across all lanes.

During index issue, bank conflicts due to multiple clusters targeting the same SRF

bank are resolved dynamically in the address network using round-robin arbitration

at the input to each SRF bank. Once communicated over the address network, the

cross-lane indices are stored in a single-entry buffer (remote address buffer or RAB)

at the intended SRF bank. Lanes that do not receive a valid request during this stage

enter a null entry in the RAB in order to maintain lock-step access across all lanes.

This level of conflict resolution and address network traversal can be overlapped with

global and local SRF arbitration in order to reduce cross-lane access latency.

Arbitration for the SRF bank port for cross-lane accesses is integrated in to the

existing arbitration among sequential and indexed streams. In order to ensure lock-

step execution, cross-lane accesses are considered during global arbitration along with

sequential streams. Therefore, when cross-lane accesses are granted the SRF port, all

lanes perform the indexed access specified by the entry in the RAB, and the resulting

data is written to the cross-lane return buffer (CLRB). Null entries in the RAB result

in corresponding null entries in the CLRB.

Once the data is placed in the CLRBs, they can be returned to the original request-

ing clusters on any cycle that does not have a LRF-level inter-cluster communication

scheduled. The return transfer is guaranteed to be conflict-free since each lane could

have issued only one request per cycle, and all operations since the requests are per-

formed in lock-step across all lanes. Data returns of these accesses may be delayed

due to the presence of LRF-level communication operations. A straight-forward pol-

icy that avoids stalling the in-lane SRF access pipeline due to cross-lane data return

conflicts is for the CLRB in each lane to have at least as many entries as the SRF
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access latency, and for cross-lane indexed accesses to not be granted SRF access on

cycles that initiate LRF-level communications.

4.3.4 Programmer Interface

The SRF-level communication may be exposed to the programmer via kernel-level

languages such as KernelC. One potential representation that uses a syntax similar

to C arrays for specifying explicit indices is shown in line 8 of the simplified table

lookup kernel of figure 4.14. The index is specified at the source level in terms

of records, similar to the access of C arrays. During compilation, operations are

automatically inserted to compute the corresponding SRF location to be accessed

based on the base address of the stream in the SRF, record size, and the specified

index. In order to bound the unpredictability of access latency incurred during the

execution of statically scheduled kernels, indexed access is only allowed for elements

within the current strip in the case of strip-mined data sets.

1   kernel lookup(
2         instream<int> in,        // sequential input stream
3         idx_instream<int> LUT,   // indexed in stream
4         outstream<int> out) {    // sequential out stream
5     int a, b, c;
6     while(!eos(in)) {
7       in >> a;        // sequential stream input
8       LUT[a] >> b;    // indexed stream input
9       c = foo(a, b);
10      out << c;       // sequential stream output
11     }
12   }

Figure 4.14: Example indexed SRF access syntax

An alternative programmer interface is via high-level or domain-specific language

constructs. For example, the Brook high-level streaming language provides seman-

tics for expressing neighborhoods and local groupings of data in multi-dimensional

streams [BFH+04]. Similar language constructs can be envisioned for explicit neigh-

bor lists in irregular data structures and other forms of non-sequential stream-level

communications. During compilation, such high-level constructs may be mapped to

hardware utilizing indexed SRF accesses.
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Reducing Address Computation Overheads

The SRF index computation is performed by the compute clusters using the exist-

ing arithmetic resources. Therefore, the index computation increases the number of

operations that must be performed within the kernel body. For each indexed record

accessed, a multiply and an add are incurred for computing the address for the first

word of the record (multiplying the record index by record size and adding to the

base of the stream; the multiply is avoided when record size is one word). Each

subsequent word of the record incurs an address increment. For kernels that have

high arithmetic intensity, these extra operations lead to a non-trivial performance

overhead. Further, since SRF addresses are relatively short (10 to 20 bits in current

stream architectures), performing the address computations using the 32- or 64-bit

data paths in the clusters is inefficient.

Providing dedicated address computation units decreases the addressing over-

heads. However, adding such units in a manner that enables them access to the

register state of clusters, which contain the record indices, increases the cost of the

intra-cluster switch. However, the address increment for accessing subsequent words

of a record can easily be implemented via dedicated units isolated from the intra-

cluster network. Therefore, the results presented in this section assume the presence

of dedicated address incrementers associated with the address FIFOs. Note that the

number of address incrementers needed is independent of the number of address FI-

FOs, and is equal to the maximum number of indexed accesses that may be issued

per cycle.

Tolerating SRF Read Latency

In order to tolerate the multi-cycle latency of indexed reads, the SRF index issue and

data access are broken into two operations and are scheduled several cycles apart.

Ideally, this separation should be extended as much as possible when the operations

are not on the critical path in order to minimize the probability of stalls on data

access. In practice, however, outstanding accesses consume address FIFO and stream

buffer entries, and as a result, the total number of indices that can be issued before

the corresponding data accesses take place is bound by the sum of the capacities



CHAPTER 4. COMMUNICATION HIERARCHY 83

of these two structures. These constraints impose two requirements on the design.

First, each address FIFO and associated stream buffer must be sized such that at

least BWs × Ls accesses can be outstanding, where BWs is the expected bandwidth

per stream, and LS is the desired index to data separation. Second, the compiler

must ensure that the number of accesses oustanding for each stream never exceeds

the sum capacity of the address FIFO and the stream buffer. A discussion of the

observed SRF read latencies and the sensitivity to index and data separation of our

implementation is presented in section 4.3.7.

4.3.5 Evaluation Methodology

The performance of a collection of application and synthetic benchmarks on four

machine configurations are evaluated in order to assess the impact of indexed SRF

access. Table 4.1 summarizes the different machine configurations, and table 4.2

lists their key parameters. The evaluations presented in this section were performed

using modified versions of the Imagine simulation infrastructure. As a result, the

machine configurations used here resemble the Imagine processor in many ways, and

differ in terms of specific parameter values from the machine configurations used for

evaluations in other chapters of this thesis.

Config. Description

Base Sequential SRF backed by off-chip DRAM

ISRF1
Indexed SRF with 1 word per cycle per lane in-lane and cross-
lane indexed bandwidth (no multiple concurrent sub-bank accesses),
backed by off-chip DRAM

ISRF4
Indexed SRF with up to 4 words per cycle per lane in-lane (4 con-
current sub-bank accesses per lane) and up to 1 word per cycle per
lane cross-lane indexed bandwidth, backed by off-chip DRAM

Cache Sequential SRF backed by on-chip cache and off-chip DRAM

Table 4.1: Machine configurations for indexed SRF evaluation

Base, ISRF1, and ISRF4 configurations are similar to the designs described in this

chapter so far. The Cache configuration is presented for comparison purposes since

integrating an on-chip cache is a straight-forward approach for capturing stream-level

communication exposed to the memory system when using a sequentially accessed
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Parameter Base ISRF1 ISRF4 Cache

Lanes 8
System clock 1 GHz
Peak compute 32 GFLOPs
Peak DRAM bandwidth 9.14 GB/s
SRF capacity 128 KB
Peak sequential SRF bandwidth 32 words/cycle (128 GB/s)
Sequential SRF latency 3 cycles
Stream buffer size (per lane per stream) 8 words
Address FIFO size (per lane per stream) - 8 8 -
Peak in-lane indexed SRF bandwidth
(words/cycle/cluster)

- 1 4 -

Peak cross-lane indexed SRF bandwidth
(words/cycle/cluster)

- 1 1 -

In-lane indexed SRF latency (cycles) - 4 4 -
Cross-lane indexed SRF latency (cycles) - 6 6 -
Cache size (KB) - - - 128
Cache associativity - - - 4
Cache banks - - - 4
Peak cache bandwidth (GB/s) - - - 16
Cache line size (words) - - - 2
Cache replacement policy - - - LRU

Table 4.2: Machine parameters for indexed SRF evaluation (SRF access latencies
shown for the case with no arbitration failures or bank conflicts)

SRF without generating off-chip accesses. Such caches have been integrated in to

a number of vector architectures [BB90; BBC+00; Cra02], as well as the Merrimac

streaming architecture [DHE+03]. However, the cache stores redundant copies of data

in the SRF and incurs a high area overhead (100%-150% if capacity of the cache is

comparable to that of the SRF) over a sequentially accessed SRF. Cache parameters

such as the short line size are based on previously published vector cache studies

[Asa98; KSF+94]. Caching is only performed for streams with potential for temporal

locality in order to minimize cache pollution. All machine configurations assume 4

fully pipelined functional units per lane, each of which supports integer and floating-

point operations. SRF and cache accesses are fully pipelined.
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Simulation Methodology

All benchmark simulations were performed using a cycle accurate simulator. Bench-

mark kernels were written in KernelC and scheduled using an automated scheduler

based on [Mat02]. Ideally, indexed SRF reads would be scheduled such that addresses

are issued as early as possible and data read as late as possible (subject to critical

path and buffering constraints) in order to minimize stalls due to bank and sub-bank

conflicts. However, the scheduler used for these evaluations does not support variable

latency operations, and therefore all benchmarks were scheduled with a fixed address

and data separation of 6 cycles for in-lane accesses and 20 cycles for cross-lane ac-

cesses. The sensitivity of performance to address and data separation is explored in

section 4.3.7.

Benchmarks

To evaluate the performance impact of indexed SRF access, we simulated a set of

application benchmarks and a synthetic benchmark representative of data parallel

applications with complex access patterns. The synthetic benchmark was parame-

terized to rapidly explore a wide range of the application space. Note that indexed

SRF access does not benefit all applications - particularly those that only require

sequential streams. However, as stream programming extends to application classes

with complex data access patterns, such as scientific computing and sophisticated

signal and media processing algorithms, indexed SRF access will benefit a significant

portion of stream applications. The benchmarks are described below.

2D FFT : 2-dimensional FFT on 64x64 array. The entire array fits in the SRF.

Both the base and indexed SRF implementations perform each of the 1D FFTs along

the first dimension across all lanes. The base version then performs a 90◦ rotation of

the data array through memory and applies the same computation along the second

dimension. In the indexed SRF version, each cluster performs the second dimension

FFT for the data in its local bank of the SRF using in-lane indexed accesses.

Rijndael : A block encryption algorithm that was recently adopted as the Ad-

vanced Encryption Standard [DR02]. While the algorithm can be implemented in

many ways, we consider an optimized implementation that relies on large numbers
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of lookups into pre-computed tables [FD01]. In the base case, the table lookups

generate gathers from memory while the indexed case performs the lookups in the

SRF. In order to facilitate high lookup bandwidth, the tables are replicated in each

lane, enabling in-lane indexed SRF access. Both versions implement the cipher block

chaining mode of the algorithm, with each cluster encrypting an independent data

stream. Such an implementation is suitable for encrypting network traffic or other

applications with many independent data streams.

Sort : Merge sort of 4096 values. Each iteration of the algorithm requires con-

ditional merging of two input streams, which in a sequential SRF requires the use

of conditional streams [KDR+00], resulting in cross-lane communication on every it-

eration. With SRF indexing, the conditional inputs are formulated as conditional

address computations, and no cross-lane communication is necessary until all data in

each lane are internally sorted.

Filter : Application of a 5x5 convolution filter to a 256x256 2D image. The base im-

plementation temporarily stores neighborhood data in scratchpad memories to avoid

replication in the SRF while the indexed SRF version simply reads the neighborhood

data directly from the SRF.

Irregular Graph Simulation (IG): Synthetic benchmark that simulates neighbor

interactions in a static irregular graph. For each node in the graph, all of its neighbors

are accessed, and the node value is updated based on the neighbors’ values. The

graph is assumed to be much larger than the available SRF space, requiring the

data set to be partitioned into several strips. No data is replicated across lanes,

and therefore, all indexed SRF accesses are cross-lane. Amount of computation per

neighbor access, average graph degree, and strip length are parameterized to explore

the application space. Table 4.3 summarizes the parameter values for a cross section

of the data sets explored. The three letter suffix at the end of the data set names

are as follows: the first letter indicates a “Sparse” or “Dense” graph – an indication

of the average number of neighbors per node; the second letter specifies whether the

data set is “Compute” or “Memory” limited on the base architecture; and the third

letter indicates “Short” or “Long” strip size. The strip sizes for the base and indexed

SRF implementations of each data set were set to occupy approximately the same

storage space in the SRF.
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Data set FP ops per Avg. graph Avg. strip size
neighbor degree Base SRF Indexed SRF

IG SML 16 4 1163 2316
IG SCL 51 4 1163 2316
IG DMS 16 16 265 528
IG DCS 16 16 265 528

Table 4.3: Parameters for IG benchmark datasets (strip size is the average number
of neighbor records processed per kernel invocation)

4.3.6 Results and Discussion

All results presented in this section assume the benchmarks are executed multiple

times in software pipelined loops. This assumption is representative of most appli-

cations of interest since they are typically applied repeatedly to long input streams

such as sequences of images or multiple strips of large, partitioned data sets.

Figure 4.15 shows the breakdown of execution time of the benchmarks for Base,

ISRF4, and Cache (performance of ISRF1 relative to ISRF4 will be discussed later

in this section). In the graph, the kernel loop body component corresponds to the time

spent executing the main loops of the kernels where much of the useful computation

is performed. Memory stall corresponds to time spent waiting for memory or cache

accesses to complete. SRF stall is time spent stalling for SRF accesses to complete.

Kernel overheads include time spent executing kernel code before and after the main

loop body, including initializations, software pipeline fills and drains, and the impact

of load imbalances among lanes.

As figure 4.15 shows, ISRF4 provides speedups over the Base configuration for all

benchmarks. FFT 2D and Rijndael on the Base machine are constrained by memory

bandwidth, and reducing memory traffic via indexed SRF access provides speedups

of 2.24x and 4.11x respectively.

Improvements in the Sort benchmark on ISRF4 are a result of efficient support

for conditional SRF access reducing kernel loop execution time. The speedup of the

Filter benchmark is due to efficient access of neighbor values directly from the SRF,

also reducing kernel loop execution time.

The IG benchmarks span a wide range of application characteristics. IG SML
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Figure 4.15: Benchmark performance impact of indexed SRF access

and IG DMS have low compute density and are constrained by memory bandwidth.

Capturing intra-strip locality in these data sets in the SRF improves performance

of both. Another factor contributing to improved performance on ISRF4 is the

increased strip sizes that can be accommodated in the SRF as a result of eliminat-

ing replication, which amortizes kernel start and end overheads over larger batches

of useful computation. The two dominant components of these overheads for this

benchmark are software pipeline overhead and load imbalance between lanes. While

we do implement dynamic load balancing using the technique presented in [KDR+00],

some imbalance still exists at the end of each strip as all lanes remain occupied un-

til the last lane has completed processing its final input. These overheads represent

a significant portion of the run time for IG DMS and IG DCS which have shorter

strip sizes. Other overheads such as application initialization operations are minimal

in this benchmark but may be significant in real applications, which would further

benefit ISRF4.

IG SCL represents a scenario where SRF indexing provides little performance

benefit since it is compute limited and has long strips even on the Base configuration.

ISRF4 also outperforms the Cache configuration for all benchmarks. The data
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set reordering of FFT 2D is fully captured in the cache, but unlike ISRF4, an explicit

reordering operation must still be performed on the data in the SRF. Therefore, the

software pipelined loop in the Cache configuration is longer than in ISRF4, requiring

more data sets to be retained in the SRF concurrently. In this case, the SRF capacity

limits the initiation interval, and hence is not able to achieve the best possible overlap

of memory transfers and computation. For Rijndael and IG SML, Cache captures at

least as much locality as ISRF4 but does not have adequate bandwidth to eliminate

all memory stalls. The cache does not provide the conditional and complex SRF

accesses enabled by ISRF4 that benefit Sort and Filter, and consequently, does not

provide any speedup for these benchmarks. The cache also does not eliminate data

replication in the SRF, and therefore, does not provide the strip size increases that

improve the performance of IG DMS and IG DCS on ISRF4.

Figure 4.16 shows the sustained SRF bandwidth demands in the main loops of the

benchmarks executing on ISRF4. While the sustained bandwidths are relatively low,

the access patterns are bursty, and indexed SRF bandwidth can become a bottleneck

for some benchmarks. For example, figure 4.17 shows the execution breakdown for

Rijndael and Filter benchmarks on ISRF1 and ISRF4. While none of the bench-

marks suffer significantly from a lack of indexed SRF bandwidth on ISRF4, Rijndael

and Filter spend 42% and 18% of the execution time in SRF stalls on ISRF1, demon-

strating the need for high indexed SRF bandwidth. The indexed SRF implementation

described in this section limits each indexed stream to issuing a single indexed SRF

access per cycle for simplicity. Therefore, ISRF1 and ISRF4 differ only for bench-

marks with more than one indexed stream. In our benchmark set, only Rijndael and

Filter require multiple indexed streams, and therefore, all other benchmarks perform

identically on ISRF1 and ISRF4.

Figure 4.18 shows off-chip memory bandwidth requirements of the benchmarks

for ISRF and Cache configurations, normalized to the Base case (note that ISRF1

and ISRF4 have identical memory bandwidth requirements). Indexed SRF access

provides significant bandwidth savings for all benchmarks except Sort and Filter.

FFT 2D benefits by eliminating a dataset reordering through memory, and Rijndael

benefits by eliminating large numbers of table lookups from memory as the tables fit
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Figure 4.17: Impact of indexed SRF bandwidth on benchmark performance

in the SRF. Reductions in the IG benchmarks for ISRF are due to eliminating intra-

strip node and neighbor record replication, partially offset by the overhead of indices

(pointers) into the condensed neighbor data array. Sort and Filter do not gain any

bandwidth reduction as all available locality is captured by the base configuration as

well.

Cache also completely captures the FFT 2D data reordering and Rijndael ta-

ble lookups, achieving bandwidth reductions similar to ISRF for those benchmarks.

Cache outperforms ISRF in terms of locality capture for the irregular (IG) bench-

marks as it is also able to capture inter-strip irregular temporal locality when partial
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Figure 4.18: Off-chip memory traffic generated by indexed SRF and Cache machine
organizations, normalized to Base

overlaps exist between strips of the data set. An in-depth comparison of the locality

capture provided by a cache compared to a SRF can be found in chapter 5.

4.3.7 Sensitivity to Access Latency

As discussed in section 4.3.4, issuing SRF addresses for read operations early enough

in order for the read to complete before the data is needed is critical for reducing SRF

stalls. However, increasing the separation between address and data can extend the

static schedule length of kernels leading to a loss of performance. Figure 4.19 shows

the variation of static schedule lengths of the inner loops of benchmark kernels as

address and data separation increases. This separation is varied from 2 to 10 cycles

for in-lane indexed access and from 2 to 24 cycles for cross-lane indexed access. The

IGraph1 kernel is used in IG SML and IG DMS benchmarks, and IGraph2 is used

in IG DCS and IG SCL.

Rijndael, Sort1, and Sort2 kernels have loop-carried dependencies that affect index

computation of adjacent iterations, which causes schedule length to increase rapidly

with address and data separation. FFT 2D, Filter, and the IGraph kernels, in con-

trast, are able to use software pipelining to tolerate very long separations with no

increase in static schedule length. The minor fluctuations in schedule lengths are due

to randomized algorithms used in the scheduler.
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Figure 4.20 shows the variation in execution time of kernels as address and data

separation increases for the in-lane indexed kernels. Performance initially improves

for all benchmarks with increasing separation as SRF stalls reduce, and then degrades

as static schedule length increases dominate. In the case of FFT 2D, which shows

no schedule length increase, performance degradation occurs as a result of increased

overheads due to deeper software pipelining.
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Figure 4.20: Execution time variation of benchmarks with address and data separa-
tion of in-lane indexed SRF accesses

Figure 4.21 shows the execution time variation for the cross-lane indexed kernels.

These kernels are able to tolerate long address and data separations due to their high
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compute density and lack of loop-carried dependencies. The irregularity in the curve

for IGraph1 at 20 cycles corresponds to an increase in the software pipeline length.
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Figure 4.21: Execution time variation of benchmarks with address and data separa-
tion of cross-lane indexed SRF accesses

4.3.8 Cross-lane Communication Resource Utilization

Figure 4.22 shows cross-lane indexed access throughput as a function of the peak

number of cross-lane accesses permitted in a bank of the SRF each cycle and the

percentage of cycles in the static kernel schedule that contain inter-cluster communi-

cations unrelated to cross-lane SRF access. The results in figure 4.22 were obtained

by issuing 1 pseudo-random cross-cluster read and 3 sequential stream accesses per

cycle per cluster.

Increasing the number of cross-lane network ports per SRF bank from 1 to 2 pro-

vides a significant improvement in throughput, while increasing this number beyond

2 provides only marginal improvements. Adding an additional network port on the

SRF side alone in linear lane arrangements such as the one in figure 4.13 does not

require an increase in the bisection bandwidth and thus can be implemented with

relatively low hardware overhead. However, this is not the case for more complex

layouts like the 2D grid of lanes proposed in [Kha03]. Consequently, the results pre-

sented in section 4.3.6 were obtained using one port per lane on both the SRF side

and the cluster side into the cross-lane network.
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Figure 4.22: Cross-lane indexed throughput variation with number of SRF accesses
per cycle and inter-cluster traffic

Figure 4.22 also shows that the reduction in cross-lane SRF throughput is 20%

or less for a wide range of inter-cluster communication traffic loads. This shows that

in the presence of both in-lane and cross-lane SRF traffic, the dominant factor in

reducing cross-lane access throughput is contention for SRF access rather than inter-

cluster traffic. Therefore, multiplexing both types of inter-lane traffic over a single

network instead of two dedicated networks is the preferred design option, particularly

given the high area cost of the networks.

4.3.9 Area and Energy Impact

Area overheads for the SRF designs with indexed access were estimated using models

extracted from CACTI 3.0 [SJ01]. ISRF1 and ISRF4 configurations incur 11% and

18% area overheads over a sequential-only SRF of equal capacity. The area increase

in ISRF1 is largely due to the addition of a dedicated row decoder per SRF bank

and the address FIFOs. Much of the extra overhead of ISRF4 over ISRF1 is in the

multiple address busses that need to be communicated to the SRF, and the addition

of a predecoder for each sub-bank. While the predecoders themselves do not consume

much area, they dictate the spacing between sub-banks within SRF banks leading to

a significant area increase. The additional column multiplexors needed for ISRF4
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and their control logic fit within the spacing between subarrays as dictated by the

predecoders.

Area overhead of cross-lane indexing is 22% over a sequential SRF, including the

18% required for in-lane ISRF4 implementation. Much of the incremental overhead

over ISRF4 is associated with the address network. Note, however, that SRF ad-

dresses are short (10 to 20 bits based on current sizes), and therefore the address

switch consumes less area than the 32- or 64-bit data networks.

The above overheads are expressed as a fraction of SRF area only. When computed

as a percentage of overall die area, they represent increases of 1.5% to 3% based

on the Imagine processor statistics reported in [KDC+02]. Therefore, fully flexible

communication at the SRF level can be supported with only a modest increase in the

overall area of a stream processor.

SRF energy consumption for sequential stream accesses is comparable for both the

indexed and sequential-only designs. Indexed accesses in the design presented in this

chapter consume approximately 4x the energy per word in the SRAM array compared

to sequential stream accesses due to increased column multiplexing. However, the

estimated energy consumed by an in-lane indexed SRF access is approximately 0.1nJ

per word in a 0.13µ technology based on the energy models of CACTI 3.0. This access

energy is still an order of magnitude lower than the approximately 5nJ required for an

off-chip DRAM access. In addition, as seen from the application examples of section

4.2.2, a singe indexed SRF access often replaces multiple memory and sequential SRF

accesses leading to significant energy savings.

Design Scalability

Stream processors may be scaled along multiple axes. The number of arithmetic

units per cluster could be scaled, requiring corresponding changes in SRF bandwidth

per lane and intra-cluster network bandwidth. Alternatively, the number of lanes

could be scaled, keeping the number of resources per lane constant. In this case,

cross-lane communication resources must be scaled accordingly. [Kha03] presents a

detailed analysis of stream processor scaling along these axes, and shows that from a

hardware scalability perspective, the preferred option is to scale the number of lanes.

A key consideration in implementing an indexable SRF across a large number of
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clusters is the scalability of the cross-cluster data and address networks. The study

by [Kha03] shows, however, that scaling the inter-cluster data network up to 256 lanes

can be achieved efficiently by placing the lanes as a 2D grid. Such a layout of lanes

results in comparably efficient scaling of the address network as well. Fully pipelined

implementations of these networks enables the throughput to be sustained despite

increased latencies. From an application perspective, those with cross-lane indexed

SRF accesses typically have few or no loop carried data dependencies, enabling deep

software pipelining, and thus high degrees of latency tolerance. This behavior for

the irregular graph benchmark was demonstrated in section 4.3.7. Therefore, the

communication resource scaling can be managed efficiently, and the added latency

tolerated by applications for up to hundreds of lanes.

A second consideration in scaling to large numbers of clusters is the added latency

incurred in control signals. In particular, the stall signals that must be broadcast

among all lanes when an indexed SRF access fails in any one cluster must be designed

to tolerate multi-cycle wire delays. A simple implementation would be to extend

the indexed access pipeline (both in-lane and cross-lane) to allow additional stages

for stall broadcast before data is used. However, this extends the address to data

separation of indexed reads, which can be detrimental to some applications with

in-lane indexed SRF access and loop-carried data dependencies. A more complex

but efficient implementation is to allow some amount of slip between the clusters.

If cluster c stalls on an SRF access in cycle i, that cluster stalls immediately, but

other clusters continue to execute until the global stall signal is communicated to all

clusters in cycle i + n, where n is the global broadcast latency. When the stalling

condition is relieved in cycle j, cluster c resumes immediately, but the other clusters

do not resume until cycle j + n when the global stall de-assert broadcast reaches

all clusters. This technique requires the ability to buffer up to n instructions and n

cross-lane communication data words at each cluster during stalls since instruction

broadcast continues for n cycles after the initial stall. Further, global stall signals

received by clusters must be correlated with the cycle they are received in order to

handle multiple overlapping stalls occurring in separate clusters. This correlation can

be implemented by buffering stall signals in the n-deep instruction buffer, along with

the instruction that was received in the same cycle as the stall signal.
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A third axis of stream processor scaling is to place multiple stream processors

on a single processor die. In such an implementation, the SRF is treated as a local

memory within each processor incurring no additional complexity in terms of scaling.

However, such a multi-processor may incorporate other memory structures that are

shared by all processors on the die, which may introduce additional levels to the

bandwidth hierarchy, and corresponding communication resources may need to be

provisioned.

4.3.10 Further Optimizations

The indexed SRF implementation presented in this section makes several tradeoffs

that are sub-optimal for performance in order to reduce implementation complexity.

Alternative design decisions that relieve a few of these performance drawbacks are

discussed here. However, it should be noted that as seen by the results in figure 4.15,

the implementation as proposed provides sufficient bandwidth to meet the demands

of the benchmarks explored to date.

In the implementation evaluated here, only the head entry of each address FIFO

is considered in arbitration for the SRF. This results in two constraints. First, an

indexed SRF stream may perform at most one access on each SRF cycle, even if there

are no other pending requests from other streams. Second, no reordering among

accesses for the same stream is possible within a lane. However, these constraints

enable important implementation simplifications. The arbiters for determining access

to each sub-bank only need to consider a single entry per address FIFO, reducing their

complexity and latency over the case where multiple entries must be considered from

each FIFO. In addition, by avoiding reorderings, the existing FIFO interface of the

stream buffers is retained.

The limitation of a single access per cycle per indexed stream could potentially

lead to low utilization of the available indexed SRF bandwidth. However, this can

easily be worked around at the application level. For example, multiple streams can

be defined at the application level, all of which access the same data set. Then,

the indexed accesses can be interleaved or otherwise distributed over these multiple

streams, providing the hardware view of multiple simultaneous indexed streams.
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The inability to reorder accesses within a stream could potentially lead to head-

of-line blocking, where subsequent entries in the FIFO are held back due to a bank

conflict for the head entry. This effect is reflected in results of figure 4.23, which were

obtained using a micro-benchmark that issues 4 pseudo-random reads per cluster on

every cycle. As the number of sub-banks per bank increases, the achieved bandwidth

increase is lower than the anticipated peak due to head-of-line blocking. Note that

while increasing the address FIFO size helps reduce cluster stalls due to address FIFOs

filling up, the gains saturate before the anticipated peak. One potential solutions is

to allow reordered accesses from the address FIFOs. Requests may be sorted by

destination sub-array, enabling a request for each sub-bank to be issued every cycle.

Re-sorting the data returns into access order may be performed in the stream buffers.

Such an implementation, while not impractical, adds complexity to the arbitration

mechanism and stream buffers, and was not used in the results presented in this

chapter since in-order bandwidth was sufficient to satisfy application requirements.
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4.4 Summary

This chapter presented a classification of the types of data reuse found in streaming

applications, and the levels of the bandwidth hierarchy these reuse types correspond

to. However, due to parallel execution and the multi-element nature of streams, a

subset of the data reuse in time manifests as communication in space at execution

time. Current stream (and vector) processor architectures do not provide a complete

communication hierarchy that enables irregular data reuse to be captured at the SRF

(or VRF) level of the bandwidth hierarchy. Irregular data reuse at the stream (or

vector) level occurs frequently in applications with complex data access patterns, such

as signal processing applications with multi-dimensional data structures and scientific

applications.

This chapter presented an SRF design that enables full communication freedom

at the stream level, enabling a broad range of data reuse types at that level to be

captured. This design was evaluated using a set of benchmarks that require com-

plex access patterns, and was found to provide speedups ranging from 3% to 411%.

Further, by capturing stream level communication at the SRF, memory system band-

width requirements were reduced by up to 50% for the benchmarks considered.

A microarchitecture for implementing the proposed SRF design was also presented.

By exploiting the existing circuit structure within the SRF and reusing the inter-

cluster network, the implementation was shown to be possible with modest area

overheads. The area increase for supporting indexed SRF access was estimated at

approximately 3% of the die area in the case of the Imagine parocessor. In addition,

stream level communication at the SRF was shown to replace multiple memory and

SRF accesses with a single indexed access in some cases, leading to reduced energy

consumption in the bandwidth hierarchy.



Chapter 5

Software- vs. Hardware-Managed

Memories

Architectures specialized for data parallel computing, such as stream and vector pro-

cessors, have typically implemented on-chip memory in the form of register files, such

as SRF/LRFs and VRFs, especially in single-chip implementations of such proces-

sors. These register resources are allocated and managed explicitly by compile-time

and run-time software. However several trends in applications and technology have

lead to many data parallel computations being performed on memory systems that

include standard cache memories which are allocated and managed by hardware with

no direct software control.

On the applications front, the popularity of media and signal processing applica-

tions have lead to many such applications being executed on a wide range of archi-

tectures. A large fraction of these highly data-parallel applications are therefore exe-

cuted on general-purpose processors with cache-based memory hierarchies. Similarly,

commodity-processor-based supercomputers, clusters, and workstations are used for

executing many data-parallel scientific applications.

On the technology front, the increasing number of devices available on a single

chip enables heterogeneous multi-processors that integrate both general-purpose and

data-parallel processor cores on a single die [PAB+05; EAE+02; Bor04]. In many

such designs, the data parallel execution units share part of the on-chip memory

hierarchy, which often consists of caches, with the general-purpose cores. On the other

100
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hand, the increasing device counts also enable dedicated data parallel architectures

to incorporate hardware-managed caches on-chip along with the traditional local and

stream or vector register files [DHE+03; Cra02].

This chapter compares the performance characteristics of stream processors with

cache-based and SRF-based memory hierarchies. We correlate benchmark simulation

results with an application space characterization based on stream accesses, enabling

conclusions to be drawn about the advantages and disadvantages of each type of

memory based on an application’s requirements. Further, the inefficiencies of cache

systems for stream computing are highlighted, establishing a set of desired cache

characteristics in order to minimize these inefficiencies. This chapter also introduces

epoch based invalidation, a hardware-software technique for reducing off-chip memory

traffic generated by cache-based systems through active invalidation of cached data

at the end of their live ranges. Throughout this chapter, the terms hardware-managed

memory and cache are used interchangeably. Similarly, the terms software-managed

memory and SRF are used interchangeably.

The evaluations in this chapter are limited to systems with either a cache or a

SRF only. Characteristics of hybrid bandwidth hierarchies that incorporate both a

cache and a SRF will be explored in chapter 6.

5.1 Sources of Performance Differences

Several differences exist between software- and hardware-managed memories that

affect their performance for streaming applications. The most important of these are

described below.

Name translation: hardware-managed memories, such as caches, are typically

addressed using main memory addresses. Therefore, a mapping function is required

for translating main memory addresses to on-chip locations. Such mapping functions

are implemented in hardware (e.g. tag lookup in caches), and hence require little

execution time, enabling fine-grain (word-granularity) address translation on every

access. However, in order to reduce the implementation area cost, access latency,

and access energy, these hardware mapping functions often restrict data placement

freedom in on-chip memory. For example, associativity of caches, which determines
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the mapping freedom of an off-chip address to an on-chip location, is often limited

in real systems. On the other hand, software-managed memories explicitly maintain

a separate address space for the on-chip memory. Name translation between the

address spaces is done in software, and therefore, there is significantly more freedom

to map any off-chip address to any location in on-chip memory. However, as the name

translation incurs run-time software overheads, it can only be done efficiently for large

blocks of data that allows the overheads to be amortized over many data elements.

As a result, software name translation in stream processors is done at the granularity

of entire streams, requiring each stream to be contiguous within the on-chip memory.

Replacement policy : When a new data item is allocated in on-chip memory, an

existing data item may need to be replaced if no free location exists within the set

of locations the new item can map to. In a hardware-managed memory, replacement

of data items is done using an application-independent fixed policy such as least-

recently used (LRU). This could potentially lead to replacing data items that the

application may still need to access, resulting in added off-chip memory traffic to re-

fetch that data. In addition, when replacing data items that have been modified by

the processor, hardware policies must always preserve these changes by writing them

to off-chip memory since the replacement policy is unaware of the live ranges of data

in the applications. However, due to efficient hardware implementations, the replace-

ment decisions require little time, and hence can be made at a relatively fine cache-line

granularity. Software-managed replacement schemes can factor in application-specific

characteristics (e.g. live ranges of data items) using complex analyses to make more

accurate replacement decisions. Given this application-specific knowledge, software

schemes can also simply overwrite modified data in on-chip memory that are no longer

live, without writing that data to off-chip memory. However, software schemes are

again limited to dealing with large data blocks in order to amortize run-time software

overheads.

Data fetch policy : When a data item is to be read by the compute units, and the

data is not already known to be present in on-chip memory, it must be fetched from

off-chip memory. In a straight-forward cache implementation, the absence of such data

in the on-chip memory is detected only once the access is attempted and misses in the

cache. Therefore, execution of operations that depend on the missed data must stall
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until the data access from off-chip memory completes. In a software-managed memory,

since application data use is statically analyzed, the available data parallelism in

streaming applications is exploited to schedule the data to be fetched sufficiently

in advance to avoid stalling. Similar analysis, however, can be used in caches to

prefetch the data in to the on-chip memory to reduce cache misses and resulting

stalls. However, since such prefetches must first check the presence or absence of

the data in the cache, bandwidth demands on the name translation mechanism is

increased.

Implementation constraints: hardware-managed memories often incur additional

area overheads for the implementation of the name-translation functions mentioned

above (e.g. storage for cache tags). More importantly, the name translation function

can often be a bandwidth bottleneck as well. For example, in an n-way set-associative

cache, n tag lookups must be performed for address translation on each single data

memory access. Therefore, in order to sustain a given data bandwidth of b accesses,

b×n bandwidth must be sustained for tag lookups. This manifests in realistic imple-

mentations as either increased overheads due to the high tag bandwidth required, or

reduced name translation flexibility as n is made smaller to reduce implementation

cost.

It should be noted that the software overheads incurred by software-managed

memories for name translation and replacement policy are divided between compile-

time and run-time. Much of the complex analyses can be done at compile-time,

possibly using profiling, incurring only a one-time penalty. However, high run-time

overheads are incurred, in terms of time and/or register capacity, in the presence of

large numbers of fine-grain data items due to the need for maintaining and manipulat-

ing base, bounds, and dependency information associated with each. Aggregating all

data in to a small number of coarse-grain data items, such as streams consisting of up

to thousands of words that are placed contiguously within the memory, significantly

reduces this overhead.

Programming and Compilation

Another source of significant difference between software- and hardware-managed

memories is the programming and compilation effort required. Hardware-managed
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memories require little programmer or compiler intervention beyond the partitioning

of data sets in order to fit the working set in on-chip memory. Software-managed mem-

ories, in addition to data set partitioning, require explicit instructions from the pro-

grammer or compiler to orchestrate transfers to/from off-chip memory and to manage

the name translation and replacement policy tasks. As a result, achieving high perfor-

mance on software-managed memories typically require more sophisticated analysis on

the part of the programmer and compiler, while hardware-managed memories may

provide performance improvements, albeit suboptimal, for naive programming and

compilation efforts. For the evaluations in this chapter, we do not factor in program-

ming effort for three reasons. First, programming effort and compiler sophistication

are difficult to quantify, particularly given the recency of stream compilation, which

lacks the decades-long development history that underpins conventional program-

ming and compilation technologies. Second, application-domain-expert programmers

in fields such as media, signal processing, and scientific computing have historically

implemented applications in their respective domains that are highly tuned to the ca-

pabilities of available technologies, often leveraging as much control of the underlying

hardware as afforded by the programming system. For such programmers, the added

control provided by software-managed memories could potentially provide opportuni-

ties for added optimizations. Finally, the benchmarks used in these evaluations were

implemented using the stream programming model, and the same code base is used

for evaluating both software- and hardware-managed memories.

5.2 Memory Use Characteristics of Applications

The manner in which an application uses on-chip memory determines its performance

sensitivity to the sources of differences between- software and hardware-managed

memories. As discussed in chapter 2, on-chip memory is used by streaming applica-

tions for two primary purposes. First, the temporal and producer-consumer locality

in intermediate stream state of applications is captured in the on-chip memory. This

reuse can be classified based on the type and granularity as discussed in section 4.1.

Second, off-chip accesses are staged via the on-chip memory, enabling computation

on data already available on-chip to be overlapped with long-latency data transfers.
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Table 5.1 lists a set of stream application benchmarks used for analyzing the

performance of software- and hardware-managed memories in this chapter. These

benchmarks were selected to cover some of the most important data parallel appli-

cation classes and a varied mix of the data reuse characteristics discussed in section

4.1. Figure 5.1 shows the distribution of on-chip memory accesses performed by these

benchmarks at the stream level of the bandwidth hierarchy, assuming an ideal on-

chip memory with unlimited capacity. Prefetch traffic shows the accesses performed

for reading application inputs which require loads from off-chip memory. Post-store

accesses are those performed for writing application results to off-chip memory. The

remaining categories correspond to the classification of stream locality types discussed

in section 4.1.

Media and Encryption Benchmarks

FFT 2D
64x64 2D FFT. On-chip memory accesses are dominated by
stream-granularity and irregular producer-consumer reuse. Ar-
ray padding is used to reduce memory bank conflicts

MPEG
MPEG 2 encoder. On-chip memory accesses are dominated by
stream-granularity producer-consumer reuse.

Rijndael

Optimized implementation of AES encryption standard. On-
chip memory accesses are dominated by irregular temporal reuse
due to table lookups. However, the working set (mostly lookup
tables) is small enough to fit in on-chip memory

Scientific Computing Benchmarks

FEM 3D

Finite element application designed for solving systems of first
order conservation laws on general 3D unstructured meshes.
On-chip memory accesses are largely a mix of temporal and
producer-consumer reuse

FEM 2D

Finite element application on 2D unstructured meshes. On-chip
memory accesses are again a mix of temporal and producer-
consumer reuse, but with a lower percentage of irregular tem-
poral reuse compared to the 3D case

MD
Molecular dynamics simulation based on GROMACS
[vdSvBA+01]. On-chip memory accesses are dominated
by irregular temporal locality

Table 5.1: Application benchmarks used to compare stream computing performance
on software- and hardware-managed on-chip memories
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Figure 5.1: On-chip memory access classification of benchmarks used in the compar-
ison of software- and hardware-managed memories for stream computing

The media applications exhibit large amounts of stream granularity producer-

consumer reuse, which results from the prevalence of sequential intermediate streams

in these applications. On the other hand, the scientific applications exhibit signifi-

cant amounts of temporal locality as well (especially MD). This corresponds to the

frequent gather and scatter accesses to large, irregular data structures found in these

applications, which often result in intra-stream temporal reuse as well as partial over-

laps between strips, leading to inter-stream reuse. The irregular temporal reuse seen

in Rijndael result from large numbers of accesses to small lookup tables.

Irregular reuse, particularly when present in the form of inter-stream reuse, is not

efficiently captured by software-managed memories due to the coarse granularity at

which name translation and replacement are performed. The simple example in figure

5.2 illustrates this inefficiency. In this example, two streams are derived from an array

of eight records in memory. Each of the two streams consist of a subset of the records.

In a software-managed memory, name translation is performed at the granularity of

entire streams, and therefore, all records of a stream must be stored contiguously in

the on-chip memory as shown in figure 5.2(a). As a result, the data reuse due to

partial overlap between the streams (e.g. records 3 and 6 that are common to both

streams in this example) are not captured in the software-managed on-chip memory.
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In a hardware-managed memory, address translation is performed at a fine granularity,

and therefore, each data item in memory creates only a single copy in the on-chip

memory as shown in figure 5.2(b). As a result, hardware-managed memories can

more efficiently capture this form of inter-stream irregular locality unless the access

pattern leads to conflict or capacity misses. However, software-managed memories

can efficiently exploit inter-stream irregular reuse is cases where the source array that

streams are derived from entirely fits in the on-chip memory (as is the case with the

lookup tables in Rijndael), or when one of the streams is a subset of the other.
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Figure 5.2: Example of inter-stream irregular reuse

5.3 Performance Evaluation

The performance of the benchmarks listed in section 5.2 were analyzed using software-

and hardware-managed memory systems. The following sub-sections discuss the

methodology, results, and implications for cache design for stream computing.

5.3.1 Evaluation Methodology

The evaluations in this section compare the performance of the benchmarks across

two processor organizations. The first implements the on-chip memory as software-

managed SRF and LRFs. This organization is similar to the stream processors that

have been described in this thesis thus far. The second organization implements most
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of the on-chip memory as a hardware-managed cache. This organization is similar

to a stream processor with its SRF replaced by a cache. The compute resources,

which include Ncl compute clusters along with the associated LRFs, and the off-chip

memory resources are identical for both processor organizations. Since the focus of

this study is to understand the memory behavior of data parallel stream computation,

the host processor is assumed to have an independent L1 cache, and its accesses are

not modeled in both the software- and hardware-managed cases.

Key properties of the execution resources and off-chip memory system used for the

evaluations are listed in table 5.2. Similar to chapter 3 the Full configuration is used

for the scientific benchmarks, and its machine parameters were chosen to approximate

a single node of the Merrimac architecture [DHE+03]. The Lite configuration is

intended to approximate a media processor such as Imagine [RDK+98] in terms of

the compute resources, and is used for the media and encryption benchmarks.

Full Lite

Clock frequency 1GHz
Compute clusters (lanes) 16 8
Peak compute (GFLOPs) 128 64
LRF capacity per lane 768 words
Word size 64 bits
Peak DRAM bandwidth (GB/s) 38 19

Table 5.2: Processor configurations for software- and hardware-managed on-chip
memory comparison

Benchmark simulations for the software-managed memory model were performed

using a cycle-accurate simulator of the stream processor and the bandwidth hierarchy.

Access traces from these simulations were used to generate corresponding cache access

traces, which were simulated on a cycle-accurate cache and memory system model to

evaluate hardware-managed memory performance.

In the hardware-managed memory model, intermediate streams are allocated in

a contiguous region of memory of size equal to the SRF. Any streams that are allo-

cated only in the SRF in the software-managed case are allocated in this region. This

enables the same address range to be reused as new intermediate streams are allo-

cated, reducing the likelihood of conflict and compulsory cache misses. In addition,
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allocated temporary streams are often reused where possible to further reduce cache

misses.

The software-managed memory used for these evaluations is an SRF with Ncl

banks. Key SRF parameters for the Full and Lite configurations are listed in table

5.3. Software management of the SRF is performed by an automated tool based on

the StreamC Compiler described in [Mat02]. This tool uses profile-based analysis of

stream flows between kernels to efficiently allocate SRF storage as well as to schedule

stream post-stores and prefetches to and from off-chip memory.

Full Lite

SRF capacity (KB) 1024 256
Peak sequential SRF bandwidth 4 words per lane per cycle
Peak in-lane indexed SRF bandwidth 4 words per lane per cycle
Peak cross-lane indexed SRF bandwidth 1 word per lane per cycle
Peak stream load/store address bandwidth 8 per cycle 4 per cycle

Table 5.3: SRF parameters for software- and hardware-managed on-chip memory
comparison

The design options available in replacing the SRF of a stream processor with a

hardware-managed cache fall into two classes. One is to replace each bank of the SRF

with an independent cache. In such an organization, each cache is only accessed by

the compute cluster directly associated with it in the same lane. Such an organization

is shown in figure 5.3(a). The other option is to replace the entire SRF with a single,

multi-banked cache that is shared by all compute clusters as shown in figure 5.3(b). In

this arrangement, date elements are mapped to cache banks based on their addresses

independently of the cluster in which the accesses originated.

Individual caches in each lane, as shown in figure 5.3(a), enables localized com-

munication between a compute cluster and its associated cache, much like the in-lane

access of an SRF bank. However, achievable bandwidth is limited by the tag lookup

requirements as discussed in section 5.1, and therefore the proximity does not provide

bandwidth benefits similar to in-lane access in an SRF. A key drawback of indepen-

dent caches per lane is the need to keep them coherent due to the possibility of
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Figure 5.3: Cache implementation alternatives for stream processing

replicated copies of the same data in multiple lanes. Hardware coherence mecha-

nisms greatly increase the demands on tag bandwidth due to the high access rates

sustained at the stream level. For example, the FFT 2D benchmark sustains over

1.2 words per cycle per lane of stream access bandwidth on average over the entire

kernel execution as shown in figure 4.16, with approximately 50% of those accesses

being writes. Even in applications with lower bandwidth requirements, stream ac-

cesses are often bursty, requiring high sustained bandwidth over certain periods of

kernel execution. Therefore, coupled with SIMD execution of the clusters, sustain-

ing the necessary coherence bandwidth requires each tag memory to sustain close

to Ncl accesses per cycle, where Ncl is the number of compute clusters. Such high

bandwidth clearly leads to impractical implementations for architectures with 8 to

16 clusters as is discussed here. Alternatively, software techniques may be used to

maintain coherence among the caches. However, such techniques often require inter-

lane communication to take place through memory, leading to stream level cross-lane

communication being exposed to the memory system, resulting in inefficient use of

the bandwidth hierarchy.

A single cache shared by all clusters, as shown in figure 5.3(b) leads to all stream
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level accesses traversing the memory switch. This results in increased bandwidth re-

quirements on the memory switch as well as increased energy consumption on stream

accesses due to the switch traversal. However, since any given memory address can

only be present in a single bank of the cache, no additional coherence support is

required. In addition, for implementations where Nb, the number of cache banks, is

comparable to Ncl, the bandwidth requirements of the memory switch are comparable

to those of the inter-cluster switch, which has been shown to scale efficiently up to

at least 256 clusters [Kha03]. Therefore, for the evaluations in this chapter, a single

cache shared by all clusters is used as the hardware-managed memory configuration.

Four variants of the shared cache configuration were evaluated in order to ascer-

tain the sources of performance differences between software- and hardware-managed

memories:

• Unlimited bandwidth cache (UBW): A cache implementation with each bank

sustaining unlimited bandwidth. While not a realistic implementation, this

configuration eliminates any performance bottlenecks due to bandwidth limita-

tions. Stream reads are prefetched in advance to minimize cache misses.

• High bandwidth cache (HBW): A cache implementation providing the same peak

aggregate bandwidth as the SRF used for comparisons. As discussed in section

5.1, such an implementation requires several times higher sustained tag lookup

bandwidth relative data bandwidth for a set associative implementation, in-

creasing implementation overheads. The particular results presented for this

configuration assumes true multi-ported tag and data memories, allowing each

cache bank to sustain n accesses per cycle, where n is the peak accesses per

bank per cycle of the SRF designs considered in the evaluations. While this is

not a practical implementation, it is intended to normalize bandwidth differ-

ences between the hardware and software-managed configurations for evaluation

purposes. Stream reads are prefetched in advance to minimize cache misses.

• Realistic bandwidth cache (RBW): A cache implementation providing a peak

bandwidth of a single access per bank per cycle. The degree of banking in this

cache is held to the same as in the corresponding SRF implementation. This
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configuration corresponds to a realistic, implementable cache. Stream reads are

prefetched in advance to minimize cache misses.

• Realistic with no prefetch (RNP): Similar to the RBW, but with no prefetching

for read accesses.

UBW, HBW and RBW cache configurations perform data prefetching in order

to reduce load misses. The prefetches are scheduled based on profiled analysis of the

steam graph similar to that used for performing stream loads for the software-managed

SRF. Note that this scheme results in greater accuracy than widely used predictor-

based hardware techniques since the prefetches are non-speculative, and covers irreg-

ular access patterns resulting from indirect addressing in addition to strided accesses.

Prefetches are scheduled a fixed l number of cycles prior to the anticipated data use,

where l is determined based on the expected memory access latency. One exception

however, is for stream accesses within the first l cycles of a kernel. Kernels are com-

piled independently of each other, and the same compiled kernel may be reused in

different parts of an application with different input and output streams. Therefore, it

is not possible to schedule prefetches across kernel boundaries. As a result, for stream

reads in the first l cycles of kernels, the prefetches are scheduled to be issued at the

beginning of the kernel execution, subject to bandwidth limitations. All prefetches

are issued at the granularity of a single prefetch per cache line.

Prefetch accesses are treated with lower priority than demand-fetches throughout

the on-chip memory hierarchy. At both the compute clusters and the cache, prefetch

requests are held in separate queues from other accesses. Prefetches are issued to

subsequent levels of the memory hierarchy only after any pending non-prefetch ac-

cesses are issued. However, once accesses are issued to the DRAM controllers, the

distinction between prefetch and non-prefetch accesses is lost.

Table 5.4 lists the key parameters for the HBW, RBW and RNP configurations1

UBW parameters are identical to HBW, but with unlimited bandwidth. Note that

1Bandwidth of RBW may be increased for sequential accesses by allowing contiguous block
accesses from the cache. While these evaluations do not support these accesses, HBW provides
an upper bound for the benefit that can be achieved via increased bandwidth. In addition, results
presented later in this chapter show that, for the benchmarks considered, those with contiguous
access patterns are not bandwidth-constrained in the RNP configuration.
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the number of cache banks are identical to the number of compute clusters in each

configuration. This design point was chosen to maintain the same degree of banking

for both the software- and hardware-managed memories although the number of cache

banks does not necessarily need to match the number of compute clusters.

Full Lite
HBW RBW RNP HBW RBW RNP

Cache capacity (KB) 1024 256
Cache banks 16 8
Peak bandwidth (words per
cycle)

64 16 32 8

Line size 2 words (128 bits)
Associativity 4-way set associative
Replacement policy Least recently used (LRU)
Prefetch Yes No Yes No

Table 5.4: Cache parameters for software- and hardware-managed on-chip memory
comparison

All cache configurations used for the evaluations in this section use short cache

line sizes, which were shown to be desirable in chapter 3 of this thesis as well as prior

literature on vector caches such as [KSF+94]. In addition, a separate valid bit is main-

tained for each word within cache lines, enabling write misses to be allocated in the

cache without fetching the line from off-chip memory. Since stream writes often up-

date up to thousands of contiguous words, this eliminates loading values from memory

that are immediately overwritten, reducing memory bandwidth requirements.

Buffers are added to enable bursty stream accesses to be distributed in time for

RBW and RNP organizations, reducing the cache bandwidth bottleneck. The buffers

at the compute clusters are not capacity bounded for the purposes of these evaluations,

but the execution stalls if a cache access does not complete within 20 cycles. The

cache hit latency for all configurations is 6 cycles when the system is unloaded.

5.3.2 Results and Discussion

Execution times of the benchmarks using the SRF and various cache organizations

are shown in figure 5.4, normalized to the SRF case. In the graph, Compute indicates
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the time spent in kernel execution. Memory stalls indicate time spent stalling on

memory accesses. Resource stalls correspond to stalls arising due to buffers in the

memory system filling up as a result of insufficient bandwidth, exerting back-pressure

which stalls kernel execution. Performance on UBW is identical to that on HBW for

all benchmarks evaluated, and therefore is not shown.
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Figure 5.4: Benchmark execution times on software-managed SRF and hardware-
managed cache configurations

For the MD benchmark, SRF underperforms all cache configurations except RNP.

The access types classification of figure 5.1 shows that MD is dominated by irreg-

ular temporal reuse, and as was seen in section 4.3.6 as well, hardware-managed

caches efficiently capture the available irregular temporal locality. This is a key

advantage of the fine-grain name translation of hardware-managed memories over

software-managed ones. Since the reuse is at the granularity of individual records,

the software-managed memory cannot efficiently capture that locality, especially when

the reuse is inter-stream, arising from partial overlaps between multiple streams. In

addition, the particular implementation of MD used in this study does not utilize

cross-lane indexed access to capture intra-stream irregular locality in the SRF con-

figuration.

For all benchmarks other than MD, SRF performs as well or better than all cache

configurations. Rijndael has a small data set, which is effectively captured by both

the SRF and caches. However, it is bandwidth intensive. Therefore, the majority of
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the performance loss is seen between HBW and RBW, indicating the main source of

performance loss is the limited bandwidth of a realistic cache implementation.

In the case of the FFT 2D and MPEG benchmarks, the majority of the perfor-

mance loss is observed between SRF and HBW cases. The stream accesses of these

benchmarks are largely to sequential producer-consumer streams, as can be seen from

the classification in figure 5.1. In addition, the intermediate streams are laid out in a

manner that fits without spills in the SRF. Therefore, the majority of the performance

loss in these benchmarks are due to mismatches between the LRU replacement policy

used by the caches and the application behavior.

UBW significantly underperforms the SRF case for both FEM 3D and FEM 2D

as well. These benchmarks have non-trivial amounts of irregular temporal reuse as

a result of gathers from large data sets. Therefore, the performance loss on UBW

for these benchmarks is largely due to conflict misses resulting from limited cache

associativity.

Among the benchmarks explored here, Rijndael is the only one where the perfor-

mance loss of a realistic cache relative to an SRF is dominated by limited bandwidth.

For all other benchmarks, while the reduced bandwidth of RBW does contribute to

performance losses, the dominant source of performance loss in caches are replacement

policy inefficiencies and limited associativity.

The benchmarks studied here were scheduled targeting the bandwidth of the SRF,

which is the same as that of the HBW cache organization. However the caches incur

higher bandwidth demands than the SRF due to prefetches. None of the benchmarks

benefit from the higher bandwidth of UBW over HBW, indicating the presence of

bandwidth headroom in the SRF configuration.

As can be expected, prefetching is a significant factor in improving performance

for all benchmarks on caches. The cache miss behavior of the benchmarks over the

different cache configurations are shown in figure 5.5, which further highlights the

importance of prefetching. The statistics for loads are classified in to two categories.

Temp loads are for intermediate results that are only allocated in on-chip memory in

the case of an SRF and are never written to off-chip memory. Non-temp loads are for

data allocated in off-chip memory, including application inputs.

As can be seen in figure 5.5, prefetching reduces miss rates of all benchmarks to
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Figure 5.5: Cache miss behavior for benchmarks used in software- and hardware-
managed memory configurations

4.6% or less on HBW and 1.3% or less on RBW. However, even these relatively low

miss rates result in very significant increases in execution time over SRF ranging

from 18% to 131% for HBW, excluding Rijndael and MD. This indicates the high

sensitivity of SIMD architectures to cache misses as a large number of issue slots are

wasted during each stall cycle due to the wide issue width of these processors.

5.3.3 Off-chip Accesses on Cache-based Systems

Figure 5.6 shows the off-chip memory traffic generated by the benchmarks for the SRF

and RBW configurations, normalized to the SRF case. These accesses are classified

as follows:

• Non-temp stores: Stores for application results and other data that are allocated

in the off-chip address space in both configurations.

• Live temp stores: Stores for producer-consumer data that are only allocated

in on-chip memory in the software-managed case. In the hardware-managed

case, however, cache lines containing this data may be evicted due to limited

associativity and replacement policy mismatches to application behavior. Since

these data were written by the processor during the producer kernel’s execution,
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the cache lines are marked dirty, and therefore generate memory stores when

evicted from the cache. These stores are for such temporary data that are live

(i.e. will be used later in the application) at the time the stores are generated.

• Dead temp stores: Stores for producer-consumer data similar to live temp stores,

except that this data is dead (i.e. no longer needed by the application) at the

time the stores are generated. Since the cache lines are marked dirty, they are

written to memory when evicted since the cache is unaware of application data

liveness.

• Non-temp loads: Loads for application inputs and other data that are allocated

in the off-chip address space in both configurations.

• Temp loads: Loads to producer-consumer data that were evicted under live

temp stores, and must be read back on subsequent use(s).
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Figure 5.6: Off-chip memory traffic generated by benchmarks under software- and
hardware-managed on-chip configurations

For all benchmarks with producer-consumer reuse (i.e. FFT 2D, MPEG, FEM 3D

and FEM 2D), dead temp stores represent 16% to 35% of the overall off-chip memory

traffic generated on the RBW configuration. These useless memory transfers also

contribute to the significant overall memory traffic increase in the FFT 2D, MPEG
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and FEM 2D benchmarks onRBW over SRF. Another source of increased off-chip

memory traffic in these benchmarks is increased non-temp loads, which corresponds

to uncaptured temporal locality due to data being evicted before all uses complete. In

the case of MPEG, memory traffic is also increased due to evictions of live temporary

data and subsequent loads of that data. Note that the memory traffic for temp loads

can be greater than that for live temp stores due to repeated evictions and references

to the same intermediate results.

MD and FEM 3D show significant reductions in overall off-chip memory traf-

fic in the RBW configuration over the SRF case. Both these applications have

large amounts of irregular temporal reuse which is efficiently captured by hardware-

managed caches due to the fine-grain name translation and replacement, but is not

efficiently exploited by a software-managed memory. A subset of this reuse is intra-

stream, and may be exploited through the use of cross-lane indexed accesses as dis-

cussed in section 4.3.3, but the current implementations of these benchmarks do not

use this feature. However, a significant fraction of this reuse is inter-stream, which

cannot be captured efficiently in a software-managed memory even with indexed ac-

cess as the reused records are distributed over multiple streams in disjoint regions of

the SRF.

5.3.4 Performance Sensitivity to Cache Parameters

In order to determine the sensitivity of the above performance results to important

cache parameters, the variations listed in table 5.5 were evaluated. These configura-

tions are identical to RBW except for the parameter variations listed in the table.

Figure 5.7 shows the normalized execution times of the benchmarks for these config-

urations alongside original RBW performance.

Longer cache lines reduce prefetch overhead since the software prefetch policy

used in these studies issues a single prefetch per cache line2. Therefore, some bench-

marks benefit from longer cache lines of the CL4 configuration as a result of the

reduced cache bandwidth demands due to fewer prefetches. However, as cache line

2One prefetch is scheduled for each cache line at compile time for all sequential and strided
accesses. In the presence of data dependent indexed loads, prefetches are scheduled for the first
word of each record and every c

th subsequent word of the record where c is the cache line size.
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Configuration Cache line Associativity

CL4 4 words 4-way
CL8 8 words 4-way
AS8 2 words 8-way
AS32 2 words 32-way

Table 5.5: Variations of RBW cache configuration for evaluating performance sensi-
tivity to cache parameters

sizes increase, the overhead of unused data in strided or indirect accesses dominate,

leading to lower performance for all benchmarks. Note that the added spatial local-

ity captured by long cache lines does not benefit stream computing beyond reduced

prefetches since spatial locality is explicitly specified in stream access patterns.

Increased associativity leads to reduced conflict misses, resulting in improved

memory system performance. This is especially true for applications with many

conflict misses, such as FEM 3D and FEM 2D. Applications with mismatches to

replacement policy, such as MPEG and FFT 2D also benefit from increased associa-

tivity since reduced contention leads to lesser reliance on accurate replacement.
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Figure 5.7: Sensitivity of benchmark execution time to cache parameters
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5.3.5 Desired Cache Characteristics

Based on the evaluations in this section, the relative strengths of the software- and

hardware-managed memories can be correlated to the types of locality they best

exploit. As was also seen in chapter 4, the hardware-managed cache configurations

were efficient at capturing irregular temporal reuse, particularly when the reuse is

inter-stream.

The software-managed memories were shown to be more efficient at capturing

stream-granularity temporal reuse and producer-consumer reuse. The application-

oblivious nature of the replacement policies and the limited placement freedom due

to name translation in hardware-managed memories were shown to lead to significant

inefficiencies in hardware-managed memories. Tag lookup bandwidth constraints were

also shown to contribute to lower performance in caches. In addition, the evaluations

in this section highlighted the off-chip bandwidth overhead imposed due to stores

of temporary data that are no longer live in the application, which arise from the

replacement policy’s inability to take in to account the live ranges of data in appli-

cations.

Based on the insights developed in this section, the following set of characteristics

are desired in caches for stream computing:

• High associativity, particularly for scientific applications that perform gathers

from large data sets

• Ability to adapt replacement policy to applications, perhaps via selecting from

a few predefined policies, based on compile-time analyses

• Support for invalidating cached data that are no longer live before they are

written to off-chip memory

• High bandwidth

High associativity and high bandwidth require well-understood but brute-force so-

lutions. Prior work such as [LRYT99; WMRW02] have studied techniques for provid-

ing software hints to improve cache replacement policies. However, these approaches

do not mitigate dead data writes to off-chip memory when such data are evicted
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from the cache. The remainder of this chapter introduces and evaluates epoch based

invalidation, a hardware-software hybrid technique for identifying and invalidating

dead intermediate state in caches. Invalidation of dead data is also shown to improve

replacement decisions.

5.4 Epoch based Invalidation

The objective of epoch based invalidation is to identify and proactively invalidate dead

data in the on-chip caches during the execution of streaming applications. Doing so

is primarily intended to minimize off-chip memory traffic generated for cache line

write-backs of dead data. However, replacement policy decisions also benefit from

explicit invalidation of dead data soon after the end of their live ranges instead of

allowing that data to be replaced over time in LRU order.

We partition the stream graphs of applications into a sequence of overlapping

epochs – regions contiguous in time. The stream graph of an application is simply

the graph whose nodes correspond to kernels and the edges correspond to stream

data flows. Any streams whose entire live range falls within an epoch can then be

invalidated at the end of that epoch. In order to simplify the necessary analysis and

to reduce implementation complexity, we define epoch boundaries at the granularity

of entire kernels.

A simple example of partitioning an application in to epochs is shown in figure 5.8.

This example shows one possible assignment of epochs over the stream graph of the

simplified finite element example from chapter 2. In the example, epoch E0 covers

from the beginning of the execution to the end of kernel K2, entirely encapsulating

streams s1 and s2. Therefore, those two streams can be invalidated at the end of E0

(i.e. end of kernel K2 ’s execution). Note that while s1 is not directly consumed by

any later kernels, it is an index stream, and hence its live range stretches until the

last use of all gathers and scatters based on it, which in this case is the use of s2 in

K2. Epoch E1 stretches from the beginning of execution to the end of kernel K3, and

encapsulates s0 and s3. While s1 and s2 also fall within E1, they are not considered

to belong to E1 since they already belong to E0, which ends earlier. Similarly, epoch

E2 captures stream s4. Stream s5 is an application output which should not be
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invalidated in the cache, and hence does not belong to any epoch.

K4K3K2K1Cells

Fluxes

Updates
s0

s1 s2

s3

s4 s5

E0

E1

E2

Figure 5.8: Example epoch allocation over the stream graph of simplified finite ele-
ment method

By allowing overlap between epochs, all intermediate streams in the above example

were captured for invalidation. However, if no overlap between epochs is permitted,

streams s0 and s3 would not be captured for invalidation since their live ranges do

not fall within any single epoch. Alternatively E0 could have been extended to cover

up to the end of kernel K3, capturing s0 and s3. However, doing so increases the time

that streams s1 and s2 remain in the cache beyond their live ranges, increasing the

probability of that data being evicted from the cache and causing dead data writes to

off-chip memory. In addition s4 can now no longer be captured in any epoch without

allowing overlap.

5.4.1 Epoch Allocation

Allocating streams to epochs is done in two stages. First, the live ranges of streams

in the stream graph are determined. The necessary analysis for this is similar to

that performed for allocating streams in a software-managed SRF, and has many

similarities to live range analysis for register allocation in standard compilers. Sec-

ond, the stream graph must be divided in to overlapping epochs and streams that

belong within each epoch assigned to it. The partitioning of the stream graph in to

epochs used for these evaluations is based on a greedy algorithm that operates on the
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profiled stream graphs of applications. Loops with data-independent finite iteration

counts are treated as fully unrolled for the purposes of our current implementation

of this analysis. The key parameters of the epoch allocation algorithm are Emax,

the maximum number of overlapping epochs allowed at any point in time, and tep, a

threshold on the minimum size of an epoch defined in terms of the amount of data

that must be captured within it for invalidation. Pseudocode for a simplified version

of the algorithm for epoch allocation within a basic block of a stream graph is shown

in figure 5.9.

Add all streams in basic block to pool P
Remove all streams live at block exit from P
for(i = 0 to (Emax-1)) 

Ks[i] = first kernel of block  // init start kernels of all epochs
i = 0
do {

Ke[i] = Ks[i]          // init last kernel of epoch = first kernel
while(stream data with live range in Ks[i]..Ke[i] < tep)
{

if(Ke[i] is last kernel in block)
Break out of while loop

Ke[i] = NextKernel(Ke[i])    // extend epoch if needed
}
Assign streams with live range in Ks[i]..Ke[i] to epoch i
Insert FlushEpoch(i) after Ke[i]
Remove streams with live range in Ks[i]..Ke[i] from P
Ks[i] = NextKernel(Ke[i])      // reuse epoch ID without overlap
i = (i + 1) mod Emax

} while not at end of block

Figure 5.9: Simplified algorithm for epoch allocation within basic blocks of stream
graphs

Emax and tep impact the effectiveness of epoch based invalidation. Increasing Emax

allows finer-grain overlapping between epochs, increasing the likelihood of capturing

all available reuse. However, in order to support invalidation based on epochs, cache

lines must be tagged with their epoch ID, and the hardware cost of maintaining epoch

IDs increases with Emax (a more detailed discussion of hardware overheads of epoch

invalidation follows in section 5.4.2). Increasing tep leads to longer epochs, increasing

the likelihood of capturing long-lived streams. However, longer epochs increase the

average time between the ends of live ranges of data and the invalidations, increasing
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the probability of being evicted from the cache before invalidation.

We have used Emax = 2 for this evaluation to minimize hardware overheads, and

found it sufficient to capture much of the available temporary state. The threshold

tep = 2048 words was selected based on a heuristic of the average lifespan and size of

temporary streams across all benchmarks. Note that tep can be varied per benchmark

or even within phases of a single benchmark since the sizes and live ranges of streams

are known at compile time. However, doing so was not shown to provide significant

performance benefits. The sensitivity of achieved performance to these and other

system parameters will be evaluated in section 5.4.4. Epochs were not allocated

to indexed memory loads due to the difficulty of address disambiguation and the

potential risk of increasing cache misses on subsequent accesses in the case of inter-

stream irregular temporal reuse.

Our current implementation of the epoch allocation algorithm only operates within

basic blocks in profiled stream graphs. However, we do not anticipate significant gains

to be had by extending this analysis beyond block boundaries for the following rea-

son. Typically, there is little data-dependent variation in the control flow within the

stream graph of an application for a given set of algorithmic parameters [Mat02]. The

variations that do occur between different data sets are usually due to varying stream

sizes, leading to changes in the number of iterations that data-dependent loops are

executed (i.e. different numbers of strips in strip-mined loops). Size variations within

a static graph can easily be tolerated by the epoch allocation algorithm since the

reliance on tep, the only stream-size-dependent aspect of the algorithm, is weak as

mentioned before. Further, limiting the analysis to a single strip of the application of-

ten does not lead to inefficiencies since most applications do not retain intermediate

producer-consumer state across strips. In addition, while our implementation uses

profiled stream graphs since they are readily available within our stream compiler

infrastructure, we do not anticipate significant degradations in epoch allocation effi-

ciency if implemented in a non-profiling framework. Live range analysis, the key step

in epoch allocation, is widely used in compilers and it’s application to non-profiled

code is well understood.
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5.4.2 Hardware Support for Epochs

Epoch based invalidation requires additional state in each cache line to store the

identifier of the epoch it belongs to. Note that non-overlapping epochs may use the

same epoch ID in hardware without loss of generality. Therefore, the number of

bits needed in each cache line for storing the epoch ID is log2(Emax + 1). Note that

the +1 is needed to indicate cache lines that do not belong to any epoch, such as

application outputs or long lived input or temporary data that are not encapsulated

within any epoch. The Emax = 2 implementation evaluated in this section requires

two additional bits per cache line. Even with the relatively short cache line size of

128 bits, this results in only modest increases in storage requirements.

Another hardware modification necessary is to enable load and store operations

to set the appropriate epoch ID when allocating or writing epoch-assigned data in the

cache. Careful attention must be paid to epoch conflicts – cases where multiple words

within a cache line belong to multiple epochs. While this case can be most efficiently

handled through independent epoch bits per word, a more simple implementation

is to remove all epoch IDs from any cache line that contains words from multiple

epochs. In other words, on writing a word that belongs to epoch E1 in to the cache,

if the corresponding line is found in the cache and belongs to epoch E2 6= E1, the

epoch ID of that line should be set to null after the write. However, this requires

read-modify-write operations on the epoch ID bits to check the existing epoch prior

to modifying it. The implementation of this is simplified by using a one-hot encoding

of epoch IDs at the cost of increasing the number of epoch ID bits per cache line to

Emax. In such an implementation, any epoch ID with n bits set, where n 6= 1, can be

treated as the null epoch. All epoch bits are reset when allocating a cache line for an

access that does not belong to any epoch or upon invalidating a line at the end of its

epoch. Note that implementing Emax = 2 using one hot encoding does not require

extra bits beyond the 2 bits per cache line discussed previously. Figure 5.10 shows a

simplified version of the state transitions of the epoch ID bits for the Emax = 2 case.

Finally, hardware support is necessary to gang-invalidate all cache lines that be-

long to a specific epoch at the end of that epoch. The implementation evaluated here

does not actually invalidate cache lines at the end of the epoch they belong to, but
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Figure 5.10: State transitions of epoch ID bits of a single cache line for Emax = 2

instead reset the dirty bits and demote the cache lines to the lowest LRU priority

state. In our model of caches, where line fetches are not incurred on store misses, this

approach provides little benefit. However, in a standard cache, this may help reduce

cache line fetches on store misses in cases where the same region is repeatedly used

to hold temporary data with disjoint live ranges.

5.4.3 Performance Evaluation

The performance of epoch invalidation was evaluated for the benchmarks that showed

significant amounts of dead temporary data stores in the evaluations of section 5.3.3 –

FFT 2D, MPEG, FEM 3D and FEM 2D. The hardware configuration used is similar

to RBW with necessary modifications to support epoch invalidation as described in

section 5.4.2, and will be referred to as RBW-Ep.

Figure 5.11 shows the overall off-chip traffic generated by the benchmarks on

RBW-Ep normalized to RBW. The components of memory traffic is the same as in

figure 5.6. As can be seen from these results, epoch invalidation effectively eliminates

most dead data stores to off-chip memory in all benchmarks shown except MPEG. In

the case of MPEG, the intermediate state is very long lived, and therefore that state

is not captured by the limited number of epochs used in these evaluations. Further,

load traffic from off-chip memory is also reduced as a result of epoch invalidation.
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This is due to reduced conflict misses among live data as dead data are explicitly

invalidated, enabling more accurate replacement decisions. The overall reduction in

off-chip memory traffic due to epoch invalidation in the benchmarks evaluated here

average 21%. In addition, cache misses for FFT 2D, FEM 3D and FEM 2D are

reduced by 9%, 16% and 10% respectively with epoch invalidation compared to the

base RBW configuration. No reduction in cache miss rates is seen for MPEG.
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Figure 5.11: Off-chip memory traffic generated by benchmarks when using epoch
invalidation

Figure 5.12 shows the execution times of the benchmarks on RBW-Ep normal-

ized to RBW. The reduced off-chip memory bandwidths directly lead to improved

performance, with speedups averaging 23% among these benchmarks.

5.4.4 Sensitivity to System Parameters

Figure 5.13 shows the sensitivity of the performance gains of epoch invalidation as

system parameters vary. The first configuration shown is the same as RBW-Ep pre-

sented before. The next four configurations are similar to those listed in table 5.5.

Finally, CL8-M is similar to CL8, but with the clock frequency of on-chip resources

(compute units and cache) doubled to evaluate the impact of the rapid scaling of

on-chip resources relative to off-chip bandwidth over time due to technology trends.
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Figure 5.12: Benchmark execution times with epoch invalidation

All execution times in this graph are normalized to the corresponding system config-

uration without the use of epoch invalidation.
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Figure 5.13: Sensitivity of execution time reduction with epoch invalidation to system
parameters

As cache line sizes and associativity increase, the performance benefits of epoch

invalidation degrade. As was shown in figure 5.7, applications spend less time on
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memory stalls on CL4, AS8, and AS32, and therefore has less to benefit from op-

timizing memory behavior. On the other hand, the performance drawbacks of long

cache lines, such as in CL8, affect both the cases with and without epoch invalida-

tion. Longer cache lines also increase the probability of epoch conflicts. However,

this effect is rare in stream processing since each intermediate stream occupies up

to thousands of contiguous words in memory. As seen by CL8-M relative to CL8,

as compute capability scales faster than off-chip memory bandwidth over time, the

performance benefits of epoch invalidation improves.

Figure 5.14 shows the sensitivity of off-chip memory bandwidths reductions from

epoch invalidation to system parameters. The bandwidth reductions are largely in-

sensitive to cache line size, and improves slightly with higher associativity for applica-

tions with many conflict misses. The improvement with higher associativity reflects

the fact that data are less likely to be written out to off-chip memory between the

end of their lifetimes and the invalidations due to the reduced conflicts in higher

associativity caches.
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Figure 5.14: Sensitivity of off-chip memory bandwidth reduction with epoch invali-
dation to system parameters
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5.5 Related Work

Studies such as [KSF+94] and [YY92] have looked at caching for vector architec-

tures and [Asa98] presents a thorough treatment of memory system design for vector

microprocessors. [Asa98; QCEV99; EAE+02] etc. have proposed specialized cache ar-

chitectures and access methods for vector processing, but these deal with bandwidth

and bank conflict issues and do not address name translation and replacement inef-

ficiencies, which we show are dominant sources of performance loss for data parallel

applications. However, these specialized caches can be augmented with optimizations

such as epoch based invalidation proposed in this thesis.

As mentioned before, approaches such as [WMRW02; LRYT99] provide software

replacement hints, but do not alleviate the lack of placement freedom due to hardware-

based name translation limitations. [HR00] presented an architecture and software-

management methodology for secondary caches of superscalar processors that allevi-

ates placement limitations. None of these techniques, however, mitigate the problem

of dead data writebacks. While some processor architectures allow explicit invalida-

tion of cache lines [DM02], which provides the potential to reduce DRAM traffic due

to dead data, invalidations must be issued per cache line leading to high instruction

overheads. The epoch based invalidation scheme we proposed provides the capabil-

ity to influence replacement decisions and invalidate dead state using only a small

instruction overhead.

Several studies, including [ZFL96; Fri02], have explored prefetch strategies for

data parallel applications and some advocated prefetching to an auxiliary structure

instead of directly to the cache. We explored such structures and found no consistent

performance improvement for our benchmarks. We believe this is due to the large

cache sizes, the absence of L1 cache interference with scalar processing, and the

accuracy of the profile-based software prefetch used in our studies. Uncached loads

and stores are often used to reduce cache interference due to stream data. However,

for systems with high compute rates, this prohibits the staging of off-chip transfers

via on-chip memory, leading to bandwidth bottlenecks and/or extended occupancy

of registers, a more scarce resource than on-chip memory, as the data must be staged

to memory directly from registers.
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Timestamp and version-based cache invalidation techniques with some similarities

to epoch based invalidation have been proposed for software-based multi-processor

coherence [Ste90]. However, these techniques are used to keep distributed state co-

herent, and are not used to improve uniprocessor cache performance by invalidating

the only valid copy of data items at the end of the live ranges. A large body of work

also exists on timestamp-based cache invalidation schemes in the context of network

and disk cache management. These schemes are again used to invalidate duplicate

copies of data, and hence are unlike the use proposed in this chapter.

5.6 Summary

This chapter analyzed the performance differences between software-managed on-

chip memories such as stream register files and hardware-managed on-chip caches

for stream computing. The main objectives were to understand the relative merits

of each in terms of locality capture and the desired cache characteristics for stream

computing.

Three main sources were identified as the causes of performance differences be-

tween software- and hardware-managed memories. Differences in name translation

result in limited placement freedom in caches (i.e. limited associativity), which was

shown to be an important limitation particularly for scientific applications with gath-

ers and scatters from large data sets. Replacement policy was another source of

differences. Application-independent replacement policies of caches, such as LRU,

was shown to be a source of performance loss for some applications whose data ac-

cess behavior differs from the history-based assumptions of the replacement policy.

However, since both the name translation and replacement are handled at a fine gran-

ularity in hardware-managed memories, they were found to be efficient at capturing

irregular stream-level locality, both inter-stream and intra-stream. While software-

managed memories provide greater placement freedom and application-aware replace-

ment, these are performed at a coarse granularity to amortize the associated over-

heads. Therefore, software-managed memories were shown to be inefficient at cap-

turing irregular locality, especially when it exists in the form of inter-stream reuse.

Therefore, software-managed memories were shown to perform best for applications
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with large amounts of stream granularity temporal or producer-consumer locality,

while hardware-managed memories were shown to perform best for benchmarks dom-

inated by irregular reuse.

A third source of performance differences between software- and hardware-

managed memories was shown to be the available bandwidth. software-managed

memories provide high bandwidth while hardware-managed caches provide lower

bandwidth in realistic implementations, mainly due to name translation function

(i.e. tag lookup in caches) bandwidth bottlenecks.

A side effect of inefficient replacement policies in caches is the write back of dead

data (i.e. data beyond their live range in applications) to off-chip memory. Epoch

invalidation was introduced in this chapter as a means of reducing these dead data

writes. Epoch invalidation uses live range analysis of stream data to explicitly inval-

idate dead data in the cache. This technique was shown to be effective at drastically

reducing dead data writes except in applications where the intermediate state is very

long-lived. Explicitly invalidating dead data was also shown to improve replacement

policy decisions, increasing cache hit rates and further reducing off-chip bandwidth de-

mands. Among the benchmarks studied, those with stream-level producer-consumer

locality benefited from an average off-chip memory bandwidth reduction of 21% as

a result of epoch invalidation. This in turn resulted in an average 23% speedup for

those benchmarks.



Chapter 6

Hybrid Bandwidth Hierarchies

The relative merits of software- and hardware-managed memories for stream comput-

ing were evaluated in chapter 5. This chapter explores hybrid bandwidth hierarchies

that incorporate both these types of memories.

A straightforward implementation of a hybrid software- and hardware-managed

bandwidth hierarchy for stream processing is to incorporate a hardware-managed on-

chip cache between the software-managed SRF and the off-chip memory of a stream

processor as shown in figure 6.1. A few data parallel architectures, such as the

Merrimac stream processor [DHE+03] and the Cray X-1 vector processor [Cra02],

have already proposed or implemented hybrid memory hierarchies similar to this

organization1.

The advantage of hybrid bandwidth hierarchies is that they capture both reg-

ular and irregular forms of locality by exploiting the presence of both software-

and hardware-managed memories on-chip, providing better filtering of off-chip mem-

ory traffic. A key drawback of such hybrid hierarchies with disjoint software- and

hardware-managed memories, however, is that the sizes of the two independent mem-

ories must be determined at design time, and any such static partitioning is unlikely

to be optimal across a wide variety of streaming application classes. As shown in

chapter 5, applications whose memory accesses are largely regular stand to benefit

little from the addition of a cache. Similarly, applications dominated by irregular

accesses may not benefit much from a large SRF.

1The software-managed memory in the case of the Cray X-1 is the vector register file.

133
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Figure 6.1: Stream processor bandwidth hierarchy with hardware-managed on-chip
cache (SRF-level cross-lane communication network not shown for simplicity)

This chapter introduces a hybrid memory structure that allows the available on-

chip memory capacity to be dynamically allocated to software or hardware-managed

memories. Therefore, for applications whose accesses are largely regular or producer-

consumer in nature, the majority (or all) of the on-chip memory capacity can be

configured as software-managed SRF storage. Similarly, for applications dominated

by irregular access patterns, the majority of the on-chip memory can be configured

as hardware-managed caches.

We also evaluate the performance impact of the proposed hybrid memory. This

evaluation is intended to quantify the incremental performance improvement that re-

sults from the ability to reallocate capacity between software- and hardware-managed

memory within the bandwidth hierarchy of a stream processor. Several prior propos-

als also exist that provide varying degrees of software control over hardware-managed

memories as described in section 6.3. However, these techniques are not specifically

targeted for stream accesses, and evaluating their relative merits within the context

of stream computing is beyond the scope of this chapter.
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6.1 Organization and Microarchitecture

The hybrid memory described in this section implements a bandwidth hierarchy that

is logically similar to the one shown in figure 6.1 in that the hardware-managed cache

is placed between the software-managed SRF and off-chip memory. In order to enable

dynamically changing the ratio of software- to hardware-managed memory capacity,

however, the physical implementation incorporates both memory types within a single

structure. A simplified physical overview of the proposed hybrid memory is shown in

figure 6.2.
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Figure 6.2: Overview of hybrid software- and hardware-managed on-chip memory
for stream computing (SRF-level cross-lane communication network not shown for
simplicity)

During typical operation, s%(0 < s <= 100) of the total capacity of each bank of

the on-chip memory is allocated as software-managed SRF space. All stream accesses

from the compute clusters are served by this SRF as in the typical stream processors

described in the early chapters of this thesis. The remaining capacity of each bank

is allocated to a hardware-managed cache. When transferring data between the SRF

and off-chip memory, the cache is checked for hits if the particular stream transfer

in progress is identified as cacheable. Whether a stream transfer is cacheable or
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not is determined (by the programmer or the programming system at compile time)

depending on whether irregular data reuse is expected within or across stream accesses

that include the current access.

The address space of the SRF portion of on-chip memory is independent from the

off-chip memory space as is the case with a typical software-managed SRF. The cache

portion is addressed using off-chip addresses, and cached data are distributed among

the banks using a subset of the off-chip address bits. Therefore, while the cache has

the same number of banks as the SRF in this implementation, the data that maps

to the software-managed portion of a bank and the hardware-managed portion of the

same bank are not necessarily the same. The memory switch shown in figure 6.2 is

traversed on each cache access.

On a cached stream load, the request is issued via the address buses of the memory

switch to the bank whose cache portion the address of the access maps to. If there

is a cache hit, the data is returned to the SRF portion of the appropriate bank over

the data buses of the memory switch. On a cache miss, the fill request is issued to

the DRAM bank(s) associated with the cache bank. Similarly, on a cached write, the

address is issued on the address buses, and the data are transferred from the SRF

portion of the source bank to the cache portion of the destination bank over the data

buses. On an uncached load or store, the network traversals remain the same, but

the operation bypasses the cache access.

In order to support both software- and hardware-managed memories, the data

storage of the hybrid memory must support the following access types:

• Contiguous block reads and writes for sequential SRF accesses

• Individual word reads and writes for indexed SRF accesses

• Individual reads and writes with tag checks for cache accesses

The data memory banks of the indexed SRF design proposed in section 4.3 is already

capable of supporting block and individual word accesses. Augmenting that structure

with the ability to store and check tags allows for all of the desired access types to

be supported. Therefore, each bank of the hybrid memory is essentially implemented

as an indexed SRF bank with associated tags. Figure 6.3 shows a block diagram of
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a single such bank. The data storage capacity of each bank of the memory is imple-

mented as several sub-arrays in order to reduce access time and energy as discussed

in section 4.3.1.
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Figure 6.3: Block diagram of a single bank of the hybrid software- and hardware-
managed on-chip memory. This example shows a bank consisting of 8 sub-arrays.

6.1.1 Capacity and Resource Allocation

A subset of the data sub-arrays within each bank are allocated to software-managed

SRF and the remainder are allocated to data storage of the hardware-managed cache.

The allocation of sub-arrays to software- and hardware-managed memory is identi-

cal in all banks. While it is not fundamentally necessary to allocate between the

two memory types at the granularity of entire sub-arrays, doing so simplifies the

implementation. Therefore, the discussion and results presented in this chapter use

sub-array-granularity allocation only.

Varying the capacity allocated to the hardware-managed cache can manifest as a

change in the associativity, line size, or the number of sets. The presence of gathers

and scatters in stream accesses favor short line sizes as seen in section 3.2. High

associativity is also desired for stream computing, especially in the context of scientific
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applications, as was shown in section 5.3. Therefore, varying line size and associativity

as capacity changes is undesirable since some configurations would lead to long cache

lines or low associativities, and hence inefficient cache behavior for stream accesses.

The design proposed here maintains a fixed line size and associativity, and varies the

number of sets as cache capacity changes.

In many implementations of scalar caches, each way of a set-associative cache bank

is mapped to independent SRAM arrays. This enables the data access in all ways to

proceed speculatively and in parallel with the tag check. This overlap between data

access and tag check leads to performance gains in latency-sensitive scalar applica-

tions. However, as discussed in chapter 2, streaming applications are able to tolerate

latencies by exploiting the data parallelism to overlap computation with memory ac-

cesses. Therefore, in a stream processor cache, tag comparison and data access can

be serialized with minimal performance impact. Once the tag check completes, at

most one way of the cache needs to be accessed. This allows the data storage for

multiple ways of a cache set to be mapped to a single memory array, enabling high

associativity caches even when as few as one sub-array within each hybrid memory

bank is allocated to hardware-managed cache.

While the data bandwidth demands of a hardware-managed cache implementa-

tion can be reduced by serializing tag and data accesses, a tag check is still required

in all ways of the cache on each access. Therefore, the tag memory in each bank

is implemented in a manner that enables a accesses per cycle, where a is the asso-

ciativity of the cache. Since each way of the cache accesses the same index within

the tag memory, the tags are stored in single-ported SRAMs where the port is suf-

ficiently wide to access a tags simultaneously. The tag capacity must be sized to

hold a sufficient number of tags for the maximum sized cache anticipated during

dynamic reconfiguration. Therefore, in configurations with less than the maximum

possible cache capacity, only a correspondingly reduced capacity of the available tag

memory is utilized. The remaining unused tag capacity can potentially be allocated

to software-managed memory at the cost of additional implementation complexity.

In doing so, address decoding is complicated in particular due to the capacity mis-

matches between the partial tag memory and the data sub-arrays that consist the

software-managed memory. The focus of this chapter, however, is to evaluate the
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macroscopic performance potential of hybrid on-chip memories, and therefore, the

evaluation presented here do not assume reuse of unused tag storage capacity.

To simplify hardware name translation from off-chip address space to on-chip

address space, the hardware-managed cache capacity is constrained to be a power-

of-two number of sub-arrays. For the purposes of this chapter, we will focus on a

16-lane stream processor with the on-chip memory bank in each lane consisting of 8

sub-arrays of 8KB each. Therefore, hardware-managed cache sizes supported consist

of 0, 1, 2, 4 or 8 sub-arrays in each bank. Note that the software-managed memory

does not require the number of sub-arrays to be a power of 2 since name translation

is performed explicitly in software. Figure 6.4 shows an example configuration with

two sub-arrays allocated to hardware-managed cache and 6 sub-arrays allocated to

software-managed SRF.

SRF
sub-array 0

SRF
sub-array 0

SRF
sub-array 0

SRF
sub-array 0

SRF
sub-array 0

SRF
sub-array 0

4 tag comparators 4 tag comparators

A
ddress (row

) decoders

Cluster & cache switch interface

Tag storage in use

Unused tag storage

Cache way 0

Cache way 1

Cache way 2

Cache way 3

SRF
sub-array 0

SRF
sub-array 0

SRF
sub-array 0

SRF
sub-array 0

SRF
sub-array 0

SRF
sub-array 0

4 tag comparators 4 tag comparators

A
ddress (row

) decoders

Cluster & cache switch interface

SRF
sub-array 0

SRF
sub-array 0

SRF
sub-array 0

SRF
sub-array 0

SRF
sub-array 0

SRF
sub-array 0

4 tag comparators 4 tag comparators

A
ddress (row

) decoders

Cluster & cache switch interface

Tag storage in use

Unused tag storage

Cache way 0

Cache way 1

Cache way 2

Cache way 3

Figure 6.4: Example hybrid memory configuration with two and six sub-arrays allo-
cated to hardware cache and software SRF respectively

Another key resource that must be allocated between the software- and hardware-

managed memories is bandwidth to the sub-arrays. In a decoupled implementation,

both the SRF and cache may be accessed on every cycle. In a unified, hybrid imple-

mentation, the bandwidth available to the memory must be shared by the two memory

structures. A straightforward approach is to statically allocate the bandwidth such

that each memory is accessed on a fixed percentage of cycles. Alternatively, each
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memory may dynamically arbitrate for access depending on bandwidth requirements.

Such a dynamic arbitration may be implemented by augmenting the existing arbi-

tration for SRF access among streams, and introducing cache accesses as yet another

consumer of the available bandwidth.

A further consideration in allocating sub-arrays and bandwidth is the impact

on peak indexed SRF bandwidth. As discussed in section 4.3, high indexed SRF

bandwidth is achieved by performing multiple independent accesses in several sub-

arrays simultaneously. For example, in order to achieve n words per lane per cycle

of indexed SRF bandwidth, the SRF bank in each lane must consist of at least n

sub-arrays. As the results in chapter 4 point out, a peak indexed SRF access rate of

4 words per cycle per lane is sufficient to meet the requirements of most streaming

applications. In the particular configuration considered in this chapter where each

bank of the hybrid memory consists of 8 sub-arrays, the SRF is always made up of

at least 4 sub-arrays, enabling 4 words per lane per cycle of in-lane indexed SRF

bandwidth in all configurations2.

A final resource that must be provisioned is the memory switch bandwidth. Note

that exploiting the strengths of each memory type, hardware-managed memory is

intended to capture irregular and unpredictable reuse patterns, while the software-

managed memory is intended to capture statically analyzable reuse patterns. There-

fore, a memory switch traversal is required only for hardware-managed memory ac-

cesses3. In a static allocation of memory array bandwidth to software- and hardware-

managed memory, switch bandwidth is trivially determined. If the hardware-managed

memory is accessed every ith cycle, the required bisection bandwidth of the data por-

tion of the memory switch is n × b/i, where n is the number of banks in the hybrid

memory structure and b is the data width of each access. Similarly, control band-

width bisection required within the memory switch is n × c/i, where c is the width

of control and address information associated with each cache access. For example,

the results presented in section 6.2 are based on a simple static bandwidth allocation

scheme where software- and hardware-managed accesses to the on-chip memory are

2Note that if all 8 sub-arrays are allocated to hardware-managed memory, no SRF accesses are
required.

3Cross-lane indexed SRF accesses, along with software-scheduled cluster communication, utilize
the separate, inter-cluster communication network.



CHAPTER 6. HYBRID BANDWIDTH HIERARCHIES 141

interleaved on every other cycle. In this case, the memory switch must sustain a

peak of 16 accesses, one from each bank, every two cycles. Therefore, the bisection

bandwidth required on the network is 8 accesses per cycle each for data and control

information.

In a dynamically arbitrated system, the memory switch bandwidth requirements

may be set based on the expected fraction of hybrid memory accesses that are to

hardware-managed cache. For example, if f = 20% of on-chip memory accesses are

expected to be to hardware-managed memory, and the expected SRF block size is

B = 4b (where b is the width of a cache access), the expected fraction of cycles

allocated to hardware-managed accesses is f/(f + (1 − f)/4) = 50%. Therefore, the

required bisection bandwidth of the memory switch is again 8 in a 16-lane stream

processor4.

6.1.2 Addressing Considerations

As the size of the memories are varied, the address bits used for addressing into them

also change. In the case of the software-managed SRF, the the key implication is

that the application and/or run-time system must not issue accesses to addresses

beyond its allocated size. In the hybrid memory proposed here, the allocation of

capacity to the two forms of memory is directed by the programmer or the compiler.

Therefore, addresses can statically be guaranteed to not exceed the available SRF

capacity. The only other concern is that the SRF address range within each bank

must be mapped to a contiguous region in the physical on-chip memory space, which

can also be guaranteed statically.

The addressing for the hardware-managed memory is more complex since the

accesses are performed using subsets of off-chip addresses. As the cache size varies, the

subsets of the address bits used for indexing into the cache and tagging cache lines also

varies. The variation in the bits used for selecting the sub-array to access is achieved

by masking the sub-array selection bits using a mask based on the number of sub-

arrays allocated to the hardware-managed cache. The masks for valid configurations

4In a realistic implementation, the bandwidth allocation must factor in some speedup over the
anticipated traffic in order to keep the network from saturating. This requirement is assumed to be
reflected in the expected traffic percentages in this example for simplicity.
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are listed in table 6.1. The number of tag bits also vary with cache size, with the

lowest capacity configuration dictating the maximum tag size. While larger capacity

cache configurations require fewer tag bits as more bits are used in sub-array selection,

the maximum number of tag bits can always be stored for implementation simplicity.

A simplified view of the logic for extracting cache set index and tag bits is shown in

figure 6.5.

Sub-arrays allocated Sub-array
to cache selection mask

0 -
1 000
2 001
4 011
8 111

Table 6.1: Bit masks qualifying sub-array selection for hardware-managed cache ac-
cess in hybrid memory

Offset in 
sub-array

Minimum tag

Sub-array
index

Word in
Cache line

Sub-array
mask

Physical cache line numberActual tag

Physical
address

Offset in 
sub-array

Minimum tag

Sub-array
index

Word in
Cache line

Sub-array
mask

Physical cache line numberActual tag

Physical
address

Figure 6.5: Cache index and tag extraction for hybrid memory (assuming physically
indexed and tagged cache)
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6.1.3 Memory Reallocation

The number of sub-arrays allocated to software- and hardware-managed portions of

the on-chip memory can be changed dynamically by updating the sub-array selection

mask for the cache and a register indicating the base address of the SRF in on-chip

memory. While this can be done at any point in execution from a hardware perspec-

tive, live data in on-chip memory must be preserved across memory reallocations.

During any change to the allocation of sub-arrays between the two types of mem-

ories, all dirty lines in the entire cache must be written to off-chip memory and all

valid bits must be cleared. This is required since updating the sub-array selection

mask changes the mapping of off-chip addresses for the entire cache. Identifying and

evicting all dirty cache lines is an inherently serial operation, and may take thousands

of cycles depending on the cache size and the percentage of lines that are dirty at the

time of reallocation.

During a reallocation that increases the capacity allocated to software-managed

memory, no change is necessary to the data in the SRF. Since reallocation is per-

formed under the control of the software system, the run-time environment is aware

of, and able to utilize, the increased capacity in the SRF after the change. When

reducing the number of sub-arrays allocated to software-managed memory, any live

streams that have not been written to memory and overlap any part of the sub-arrays

being reallocated must be written to memory. The necessary stream stores for or-

chestrating this must be issued by the software system, and completed, before the

reallocation is initiated. The stream liveness and occupancy information necessary for

performing these stores is already available in the software system as the allocation

and management of the SRF is fully under its control.

6.2 Performance Evaluation

The performance impact of the hybrid memory proposed in this chapter was evaluated

using the scientific benchmarks, FEM 3D, FEM 2D, and MD, introduced in chapter

5. We focus on these applications since they are the ones with the most complex

access patterns that mix regular and irregular accesses and hence stand to benefit the
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most from a hybrid bandwidth hierarchy.

The applications’ performance was determined using cycle-accurate simulations on

4 machine configurations which are described in table 6.2. The configurations C0, C1,

C2, and C4 correspond to allocating 0, 1, 2, and 4 sub-arrays to hardware-managed

caches (out of a total of 8). The benchmarks were re-scheduled for each configuration

resulting in changes to strip size to minimize stream spills to off-chip memory as

SRF size is varied. No reallocation of sub-banks to SRF and cache were performed

during any one benchmark’s execution for the results presented here. Therefore,

all reallocation of sub-banks were performed with no live data in on-chip memory,

avoiding the need to store live, dirty state to off-chip memory as discussed in section

6.1.3. More efficient execution may be achieved through dynamic reallocation of

sub-banks during different phases of applications, enabling the memory system to be

adapted to application requirements at a finer granularity.

Arbitration between SRF and cache for on-chip bandwidth was performed using

a simple, static allocation scheme for the results presented in this section. Under this

scheme, the full bandwidth of the on-chip memory is alternated between SRF and

cache access on every other cycle. Other machine parameters are the same as those

specified for the Full configuration evaluated in chapter 5. Note that the case with

all 8 sub-arrays allocated to cache is not presented in this chapter since the all-cache

on-chip memory organizations were discussed and evaluated in detail in chapter 5.

Configuration SRF Cache

C0 1024KB (8 sub-arrays) 0KB (0 sub-arrays)
C1 896KB (7 sub-arrays) 128KB (1 sub-array)
C2 768KB (6 sub-arrays) 256KB (2 sub-arrays)
C4 512KB (4 sub-arrays) 512KB (4 sub-arrays)

Table 6.2: Hybrid streaming memory configurations evaluated. Memory capacity
shown is the total across all lanes. Number of sub-arrays shown in parentheses is per
lane.

Figure 6.6 shows the execution times for the three benchmarks on the four con-

figurations described in table 6.2, normalized to the C0 configuration. The execution

times are divided in to time spent in kernel execution, memory accesses (including
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memory stalls), and overhead due to sharing the total on-chip memory bandwidth

between the cache and SRF. The overhead due to bandwidth sharing is computed

by comparing to the execution time on a configuration with separate SRF and cache

memories, enabling each to sustain 2x the peak bandwidth available on the hybrid

architecture.
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Figure 6.6: Execution times of scientific benchmarks on hybrid memory organizations
(normalized to C0 )

As can be seen in figure 6.6, kernel execution portion of the benchmark run-times

increases as the amount of memory allocated to the SRF decreases. This arises due

to the fact that the benchmarks are re-optimized for each memory configuration,

resulting in shorter data strip sizes in order to avoid excessive spilling of live data to

memory as SRF capacity is decreased. With smaller strip sizes, a greater number of

kernel invocations are required to process the entire data sets, incuring more kernel

startup and shut-down overheads, increasing overall execution time.

As was seen in section 5.2, FEM 3D accesses have significant amounts of irreg-

ular temporal reuse that can be effectively captured in a hardware-managed cache.

Therefore, as the cache size increases, the time spent on memory accesses drop for

this benchmark, outweighing execution time increases and resulting in an overall per-

formance improvement. FEM 2D, on the other hand, has fewer irregular accesses,
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and therefore, the reduction in memory access time is insufficient to overcome ex-

ecution time increases and bandwidth overheads as SRF size decreases. The MD

benchmark’s accesses are dominated by irregular temporal locality as seen in section

5.2. However, this benchmark is largely compute-limited, and improving memory

system performance leads to little overall performance improvement. The memory

access time that is not overlapped by computation in this application is due to a load

that occurs at the beginning of each kernel invocation, and therefore the overhead of

that access increases as smaller strip sizes increase kernel invocations.

Execution time overhead due to bandwidth sharing between the SRF and cache

is modest at 3.7% at most for FEM 2D, and less than 0.5% for FEM 3D and MD.

Therefore, this sharing is not a performance bottleneck for the scientific streaming

applications considered here, even with the simple static bandwidth allocation used

in these simulations.

The overall performance impact of the hybrid SRF and cache organization is mixed

for these benchmarks. While FEM 3D achieves a 10% speedup by allocating 50% of

the available on-chip memory to a hardware-managed cache, FEM 2D performs best

with all memory configured as a software-managed SRF. While MD performs best

with a small 128KB cache, the speedup is modest at only 2% over a SRF-only configu-

ration. On one hand, these results demonstrate the varying needs of the applications,

and the importance of being able to tailor the hybrid memory organization to the

specific needs of each. No one configuration provides the best performance across all

benchmarks. On the other hand, the benefits over a purely software-managed mem-

ory is relatively small, indicating that an SRF alone is largely sufficient to overcome

the bandwidth constraints of off-chip memory for these compute-intensive bench-

marks. However, with technology scaling, on-chip computation capabilities continue

to improve at a faster rate than off-chip bandwidth and latency gains. Therefore, in

order to estimate the applicability of hybrid memory structures for future technology

generations, we evaluated the benchmark performance with a 4x increase in the com-

pute capability to bandwidth ratio of the above configurations. The results for these

simulations are shown in figure 6.7.

As compute capability scales more rapidly than off-chip memory bandwidth, the

impact of memory system on overall performance is clearly amplified. In the case
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Figure 6.7: Execution times of scientific benchmarks on hybrid memory organizations
(normalized to C0 ) with increased computation to off-chip bandwidth ratio

of FEM 3D, increasing cache sizes continue to offset increased execution time due

to shorter strip sizes. The best performance is seen for the hybrid C4 configuration

with 512MB each of cache and SRF, which achieves a 17% speedup over the base

C0 configuration. In the case of FEM 2D, the limited irregular locality present in

the application does not make caching an appealing option. In fact, as the SRF

size reduces, per-kernel memory accesses that occur during kernel initialization cause

the memory bottleneck to exacerbate. Therefore, the optimal configuration for this

benchmark is C0, with no on-chip hardware-managed cache memory. In the case of

MD, the access patterns are dominated by irregular temporal locality. These accesses

also have a fairly high degree of locality as many of the particles interact with each

other, causing multiple, repeated accesses to the same data. As a result, even a

small cache is sufficient to cause this benchmark to be compute-limited, leading to a

102% speedup over the memory-limited base (C0 ) configuration. Increasing the cache

further leads to small performance losses as execution times increase, adding pressure

to the performance-limiting compute resources. Therefore, the optimal configuration

for this benchmark is C1, with a small hardware-managed cache and a large SRF.

These results corroborate the trends observed in the current technology results in
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figure 6.6, and demonstrate the varying memory hierarchy requirements, even among

applications within the scientific computing domain. Further, the increasing perfor-

mance benefits of hybrid memories with technology scaling is clearly demonstrated

by these results.

6.3 Related Work

As mentioned previously, Merrimac and Cray X-1 architectures employ hybrid mem-

ory hierarchies. However, the software- and hardware- managed memories in these

architectures are physically disjoint, and their capacities are fixed at design-time. As

seen in section 6.2, such static partitionings of capacity can be sub-optimal over a

broad range of the data parallel application space, particularly as off-chip bandwidth

becomes increasingly scarce.

Several variations of hybrid memories with dynamically variable allocation of re-

sources to software- and hardware-managed memories have been proposed before,

such as the designs described in [MPJ+00; RAJ00; SKMB03]. However, unlike the

design presented in this chapter, these prior proposals are not optimized for stream

processing, and hence do not exploit the available latency tolerance nor attempt to

identify and preserve specific memory characteristics that are important for achiev-

ing high performance in stream processing. In addition, these prior proposals often

require a reduction in cache associativity in order to allocate capacity to software-

managed memory.

Locking cache lines has been proposed as a technique for gaining software control

over a subset of the lines within a hardware-managed cache. While this technique is

practical for a relatively small amount of software-managed storage, software control

over a large capacity incurs high run-time overheads as line locking and replace-

ment must be managed at the fine granularity of individual cache lines. Further the

hardware- and software-managed regions exist within the same address space, leading

to conflicts between the two types of data, reducing effectiveness. The design pro-

posed in this chapter exposes the division between software- and hardware-managed

memory, and the data that map to each, to the hardware implementation. This en-

ables a separate address space to be maintained for software-managed memory, which
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does not conflict with the hardware-managed memory.

6.4 Summary

This chapter explored the performance potential of hybrid memory hierarchies that

incorporate both software- and hardware-managed memories for stream computing.

The general organization evaluated incorporates a hardware-managed, on-chip cache

between the software-managed SRF and off-chip memory. This enables irregular data

reuse present in stream loads from off-chip memory to be captured in the on-chip

cache.

We presented an on-chip memory organization that allows flexible allocation of

the total available on-chip memory capacity between the SRF and cache. This design

was based on the indexed SRF architecture presented in section 4.3, and is augmented

to store tags and perform addressing for the hardware-managed cache.

Evaluations in this chapter focused on scientific application benchmarks since they

exemplify the complex access patterns that stand to benefit most from hybrid mem-

ory organizations. Our results showed that no one partitioning of storage between

SRF and cache was optimal even among the scientific applications studied. There-

fore, by allowing dynamic reallocation of capacity between the SRF and cache, the

architecture can be optimized for best performance on a per-application basis. How-

ever, the results also showed that in today’s implementation technology, there is little

performance gain (10% or less for the benchmarks evaluated) to be had by support-

ing hybrid memory hierarchies relative to an SRF-only on-chip memory. Evaluations

approximating likely future technology trends indicate that the benefit of hybrid

memory hierarchies increase significantly as off-chip bandwidth becomes an increas-

ingly scarce resource with respect to on-chip compute capability. Results of these

studies indicate speedups of over 2x for some applications with the addition of even

a small cache, while other applications require a larger cache to achieve appreciable

performance gains, and yet others lose performance as SRF capacity is lost with the

addition of a cache.



Chapter 7

Conclusions

Stream processing has been shown to outperform mainstream programmable comput-

ing solutions while consuming less power for data parallel applications. Exploiting

the data- and instruction-level parallelism inherent in these applications, stream pro-

cessors sustain many operations in parallel, and overlap them with memory accesses

in order to improve computation throughput. Realizing the performance potential of

stream processing, however, depends on the ability to manage bandwidth demands in

the memory hierarchy to sustain the operands needed for highly parallel computation.

This dissertation presented and evaluated several techniques for and tradeoffs in

improving bandwidth hierarchy performance for stream processing with a particular

emphasis on improving off-chip bandwidth utilization. We also presented evaluations

of memory hierarchy requirements of stream processing with respect to other pro-

grammable, parallel execution techniques. The results of these studies demonstrated

that stream processing requires less intermediate state storage capacity, and is a bet-

ter match to modern DRAM characteristics than vector and multi-context execution

models.

We introduced an indexed stream register file architecture that enabled data reuse

patterns found in a broad range of data parallel applications to be captured in on-

chip memories of stream processors, reducing off-chip bandwidth demands by several

fold in some cases. This, in effect, enables classes of data parallel applications that,

due to bandwidth bottlenecks, could not previously be efficiently executed on stream

processors to be supported efficiently.

150
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Software-managed on-chip memories that are typically found in data parallel archi-

tectures were shown to lead to better performance for many streaming applications

than the hardware-managed caches found in general-purpose CPU memory hierar-

chies. However, hardware-managed caches were shown to be better at capturing ir-

regular data reuse patterns of some applications, particularly in the case of scientific

computing. We presented a framework for identifying the suitability of software- or

hardware-managed memories for a given application based on the types of data reuse

found in the access patterns. We also introduced epoch-based cache invalidation,

a hardware-software hybrid technique to improve cache performance for producer-

consumer reuse patterns that are common in many streaming applications.

Hybrid on-chip memory hierarchies that consist of both software- and hardware-

managed memories have been incorporated on a few recent designs as a means of

achieving the benefits of both types of memories. Our evaluations of such memories

show that no single partitioning of the total available on-chip memory capacity be-

tween the two memory types is optimal for all applications. We presented a hybrid

organization where the resource allocation between software- and hardware-managed

memory can be dynamically altered to suit the needs of individual applications.

Evaluations of this memory organization for a set of scientific applications showed

little benefit from hybrid memory hierarchies in current implementation technologies.

However, models approximating future technologies showed significant performance

advantages resulting from the use of hybrid memories, particularly when resource

allocation between software- and hardware-managed memories can be tailored to suit

application-specific requirements.

7.1 Future Research

The techniques and evaluations presented in this dissertation both improve bandwidth

hierarchy performance and broaden the range of applications amenable to stream com-

puting. However, a number of related research areas have the potential to further

extend the applicability of stream computing in general and the techniques presented

in this thesis. In addition, incorporating techniques that are found to be highly effec-

tive in stream processors in to other classes of architectures also has the potential to
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provide significant benefits for executing streaming applications on such architectures.

Multi-processor Systems

The evaluations in this thesis focused on the bandwidth hierarchy of a single stream

processor. In large-scale, distributed shared-memory systems, such as the Merrimac

streaming supercomputer, accesses to memory on remote nodes exacerbate the band-

width and latency bottlenecks of off-chip accesses. The techniques discussed in this

thesis are likely to yield even greater benefits in such situations.

Multi-processor systems also introduce tradeoffs in work and data distribution.

Data layout across multiple nodes and the resulting inter-node accesses during com-

putation are likely to have large impacts on performance for many applications and

determine the bandwidth and complexity of the interconnect between nodes. Ad-

ditional complexity is also introduced in terms of maintaining coherence among the

bandwidth hierarchies of different processors. The distribution of coherence respon-

sibilities between software and hardware components as well as the role of synchro-

nization, which have been thoroughly studied for general-purpose CPUs, need to be

reevaluated in the context of stream processors. Several of these issues are already

under active investigation in the Merrimac project and other research efforts.

Scaling and Further Integration

With implementation technology scaling, stream processor architectures are likely to

scale along several axes including functional units within a lane, number of lanes

within a processor, and number of processors on a chip. This scaling is likely to lead

to increased demands on the memory hierarchy as briefly highlighted in some of the

evaluations in this thesis, increasing the utility of the techniques presented here. These

trends may also lead to sparse interconnects in place of the fully-connected intra- and

inter-cluster networks modeled in this thesis as the number of communicating units

grow. Issues of sparse interconnects were discussed briefly in [Kha03], but need to be

evaluated more thoroughly.

Further integration between memory and computing is also likely with technology

scaling, resulting in computation capabilities interspersed at various levels of the



CHAPTER 7. CONCLUSIONS 153

bandwidth hierarchy. A simple form of this integration may be the inclusion of light-

weight computing capabilities embedded in off-chip DRAM as discussed in [OCS98].

Such architectures lead to step changes in the otherwise gradual variation of the ratio

of computing to memory bandwidth that results from technology scaling, and the

resulting impact on bandwidth hierarchy design need to be evaluated.

Memory System APIs

A key characteristic of stream processors is the ability to specify stream transfers

to and from off-chip memory in a manner entirely decoupled from the computa-

tion. Control of the memory system for such transfers is exposed to the programmer

and/or compiler via streaming APIs. The potential for incorporating this level of

decoupling between memory transfers and computation, and exposing coarse grain

memory transfers via APIs, in other classes of processors needs to be evaluated.

The likely benefits of such support in vector processors was already briefly dis-

cussed in section 3.2.6. Similar benefits are likely to be observed in multi-context

processors for streaming applications as well. Even in general-purpose CPUs, such

decoupled memory APIs could lead to significantly more effective data prefetches with

reduced instruction overheads and improved accuracy, including cases where indirect

addressing may make traditional hardware prefetch techniques less effective.

Hybrid Memory Hierarchies and Epoch-based Invalidation

The effectiveness of hybrid software- and hardware-managed memories and epoch-

based cache invalidation for stream computing was demonstrated in this thesis. These

techniques have the potential to be useful in other programming environments and

execution models as well. The degree to which these techniques provide performance

improvements in the absence of the additional locality exposed by the stream pro-

gramming model needs to be evaluated.
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Register Storage Implementations

Chapter 3 of this thesis discussed the ability of stream processing to reduce the

register capacity requirements over multi-context execution models. However, multi-

context processors support more general programming styles, including the execution

of different instruction traces in each parallel context. Techniques for leveraging the

benefits of each of these two types of architectures within the other could lead to far

more efficient yet flexible implementations than are available today.

In multi-context processors, register capacity requirements are increased due to the

unpredictability of context switches, and therefore, the need to hold the entire register

space of each context in hardware. Stream processors, on the other hand, manage the

register space far more efficiently through software-management, aided by compile-

time analysis and static scheduling of computation. Context storage structures that

provide similar benefits in terms of compressed register management, yet do not

require strict software scheduling present an interesting research direction that has

the potential to yield multi-context processors with register requirements on a par

with stream processors.

In stream processors, relaxing the strict software-scheduling and SIMD execution

has the potential to greatly increase the range of applications amenable to stream pro-

cessing. The key future research for realizing such designs lies in the development of

efficient execution engines. From a bandwidth hierarchy perspective, the indexed SRF

implementation proposed in chapter 4 adapts trivially to support fully independent

accesses across lanes with no requirement of SIMD execution. Further, the hybrid

memory structure proposed in chapter 6 provide support for irregular reuse patterns

likely to arise in a loosely-coupled parallel execution environment. Therefore, the con-

tributions of this thesis lays the groundwork for far more general execution models

to be supported while retaining the benefits of a streaming bandwidth hierarchy.
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