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Abstract

Today’s distributed applications are built using processes and therefore are
only able to rely on process-level protection domains. In this paper we argue
that process-level protection domains are insufficient for distributed applications
and propose job-level protection domains as a new high-level building block for
distributed applications. We present a network interface architecture called the
Network Management Unit (NMU) and show that it efficiently implements job-
level protection domains and argue that this allows programmers to productively
develop reliable high-performance distributed applications.

1 Introduction
After many decades of evolution, computer systems have converged on a process-based
application model. Surrounding each process is a process protection domain which
acts as a region of security to the process. Attributes provided by process protection
domains include: low latency data access, physical hardware abstraction, data privacy,
fault isolation, and fine-grained control of inter-process communication. The imple-
mentation of process protection domains relies heavily on the Memory Management
Unit (MMU) as an efficient hardware device that provides real-time enforcement of
the process-based policies set by the operating system. For applications that run on a
single computer, the process-based application model is sufficient because applications
exist within a single memory system.

Unlike applications that run on a single computer, distributed applications contain
numerous processes working collectively on a network. Inherently, distributed appli-
cations span many memory systems and are network based rather than memory based.
Application processes are often grouped by similarity into collections that comprise



a subsection of the application. We call these process collections jobs, although they
could alternatively be called process groups or process clusters. Distributed applica-
tions are logically created from one or more jobs and jobs may even be shared between
multiple applications. Even though modern distributed applications are logically cre-
ated with jobs, they are physically comprised of processes. Process protection domains
protect boundaries within memory systems, yet the bulk of distributed application data
accesses are network based. As a result, distributed application processes are forced
outside of their available protection domains for access to their own data and commu-
nication with other application modules.

By relying only on process protection domains for distributed application develop-
ment, system designers are forced into making trade-offs between application perfor-
mance, development productivity, and application reliability. To overcome this limi-
tation, we present a methodology for network-based job-level protection domains as a
new building block for distributed applications. We show that job protection domains
can provide distributed application developers with low latency data access, physical
hardware abstraction, data privacy, fault isolation, and fine-grained control of inter-job
communication. Similar to process protection domains which are established by a node
operating system and enforced with efficient memory-based hardware, job protection
domains are established by a distributed operating system and enforced with efficient
network-based hardware.

For implementation of job protection domains we propose a network interface ar-
chitecture called the Network Management Unit (NMU). The NMU is to jobs what
the MMU is to processes. It enforces job-based policies defined by a distributed op-
erating system in real-time. We show that NMUs provide strict enforcement of job
isolation and argue that this allows programmers to productively develop reliable high-
performance distributed applications.

NMU design applies to supercomputers, data centers, and cloud computing cen-
ters, or in general, to distributed systems that are physically or logically centralized.
NMU design does not apply to distributed systems where the governing entity does not
control every aspect of the machine (e.g. the Internet).

Contributions: This paper makes following contributions:

1. We present a methodology for network-based job protection domains as a higher
level building block for distributed applications. This is the first work to present
a network design that implements a job-oriented protection model.

2. We propose the Network Management Unit (NMU) as a network interface archi-
tecture that efficiently enforces job protection domains.

3. We provide a qualitative analysis of the efficacy of NMUs in terms of application
performance, application reliability, and programmer productivity.

The remainder of the paper is organized as follows: In Section 2 we describe the
protection domains that exist in current distributed applications. In Section 3 we pro-
pose a formal definition of jobs and job protection domains as a new high level building
block for distributed applications. In Section 4 we present the Network Management
Unit (NMU) and describe its architecture and operation. In Section 5 we analyze the
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NMU’s implementation efficacy for job protection domains. In Section 6 we discuss
some of the issues related to NMU implementation. In Section 7 we present related
work. In Section 8 we conclude the paper.

2 Process-based Distributed Applications
Distributed applications contain numerous processes often spanning many memory
systems. For reasons of management and modularity, these processes are grouped
by similarity in collections we call jobs. These jobs are often designed by different
development teams within a company or between different companies. With varying
levels of complexity, applications are comprised from one or more jobs, and jobs can
even be shared by multiple applications.

In supercomputing platforms, applications often consist of a single job and are
scheduled exclusively to a set of nodes. In contrast, modern data center applications
consist of many jobs and jobs are often shared between applications. For example, a
common architecture for web-based applications consists of three jobs: a web front-
end, a cache, and back-end storage. The web front-end job is a collection of processes
designed to handle HTTP requests and responses. The back-end storage job is a collec-
tion of processes used for persistent storage, typically on disk. The cache job is a col-
lection of processes used for creating RAM-based or flash-based caching to overcome
the relatively low throughput of the back-end storage job. The web front-end job uses
the cache job and the back-end storage job for data storage and manages data transfer
between itself and the two other jobs. Combined, these three jobs comprise one appli-
cation that serves a user with an HTTP-based application. As companies create more
applications, they can utilize the same back-end storage and/or cache jobs for multiple
applications. They can also utilize multiple back-ends or caches that are customized
to specific application workloads. This is the common area where jobs are shared be-
tween multiple applications. Companies like Facebook [4] [23] [5], Google [16] [8] [9],
LinkedIn [10], Twitter [18] [19], and many more use this style of architecture. Many
of the jobs running in today’s data centers are instances of software packages such
as relational databases (e.g. MySQL [12]), non-relational databases (e.g. HBase and
BigTable [8]), in-memory key-value stores (e.g. Memcached [14]), distributed file
systems (e.g. HDFS and GFS [16]), and parallel processing frameworks (e.g. MapRe-
duce [9]).

With even more complexity than common data centers, cloud computing centers
have all the complexity of standard data centers potentially multiplied by the number
of clients using the facility. In efforts to reduce the overheads of hosting numerous
computing clients, and in efforts to make the service more desirable to customers,
many cloud computing providers have developed large scale jobs that are designed to
aggregate the needs of many clients into one job or a set of jobs. Instances of this are
found in Amazon’s AWS [15], Microsoft’s Azure [7], Google’s Cloud Platform [22],
and OpenStack [27]. These contain unified services for relational and non-relational
databases, RAM-based storage, and distributed file systems. From an application’s
perspective, these are all job instances that are shared by many applications.

Jobs have become the logical building block of large scale distributed applications,
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however, without job protection domains, distributed applications only have process
protection domains to rely on. Distributed applications are unique in that inter-process
communication (IPC) is extensively used for communication between application mod-
ules. Because process protection domains only protect memory system boundaries,
the message passing mechanisms of IPC employed in distributed applications forces
processes outside of their protection domain for access to nearly all of their data. Fur-
thermore, asking an operating system for network access every time data needs to be
accessed incurs excessive overhead. Our claim is that the lack of job-level protection
domains is the culprit behind many of issues of distributed systems relating to poor
performance, instability, and low development productivity. These effects have forced
system designers and application developers into making trade-offs between applica-
tion performance, application reliability, and programming productivity.

Instead of viewing protection domains only from a processing perspective, we must
also view them from the perspective of the memory system. For single node applica-
tions, the memory system is quite simple. Given a read command and address, the
corresponding data is returned from the memory address. Given a write command, ad-
dress, and data, the corresponding data is written to the memory address. Because the
MMU has pre-filtered all the invalid memory requests, the memory system needs not
check credentials before fulfilling requests. For distributed applications, data storage
systems must meticulously check requester identity authenticity and permissions. This
increases program complexity while reducing application performance. On top of this,
distributed applications must also guard themselves against denial-of-service attacks,
which might be driven by faulty code or malicious attackers.

3 Job-based Distributed Applications
In this section, we present definitions for jobs and job protection domains. Our formal
definition of a job is a collection of processes working together in the network for a
common purpose. There are no stipulations on these collections that processes must
originate from the same code. The purpose of defining a job is to group many sub-
entities (processes) into a single higher level entity where privileges can be applied
and adhered to as a whole. Combined, job and process protection domains provide a
two-stage protection domain hierarchy. This is shown in Figure 1.

The contents of three example job definitions are shown in Table 1. For each job
there is a unique job ID, job relative process IDs, physical network addresses, and a set
of ports (described later). As shown by job A, multiple processes of the same job may
be resident on the same node. Furthermore, shown by jobs B and C, processes from
different jobs may be resident on the same node.

Table 1: Example Job Definitions

Job ID Process IDs Addresses Ports
A 0,1,2,3,4,5 10,11,12,10,11,12 Ψ,∆,Θ
B 0,1,2,3 20,21,22,23 Ψ,Λ,Π,Σ
C 0,1,2,3,4 20,22,24,26,28 Υ,Φ,Ω
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Figure 1: Multiple Protection Domains

Table 2: Job C’s Protection Domain Definition

Job ID Process IDs Ports
B 2,3 Π,Σ
C 0,1,2,3,4 Υ

A job protection domain is a set of privileges that corresponds to a job. The first
level of privileges in a job protection domain is a list of jobs that a job may commu-
nicate with. These are called remote jobs and the job list is called the remote job list.
Table 2 shows an example job protection domain corresponding to job C from Table 1.
The remote job list corresponds to the column labeled “Job ID”. As shown, job C has
been given permission to communicate with jobs B and C but not job A. Notice that
it is a privilege for a job to communicate with the other processes within its own job.
There are cases, such as web server front-ends, where processes within a job do not
communicate with each other and therefore it is advantageous to keep these processes
isolated.

The second level of privileges in a job protection domain describes which processes
a job may communicate with. For each remote job contained in the remote job list,
there is a corresponding list that contains the process IDs of all the processes that the
job has been given access to. This list is called the remote process list. This is shown
in Table 2 under the column labeled “Process IDs”. This example shows that although
job B is comprised of four processes, job C has been given access to only two of them.

The third level of privileges in a job protection domain describes the manner in
which a job is allowed to access the jobs and processes it has been granted access to.
This is implemented by a system called ports. Each job has complete control over
the ports that it exposes. For each remote job in the remote job list, there is a list
that contains the ports that the job has been given access to use for the corresponding
remote job. This list is called the remote ports list. Table 1 shows that job A has
chosen to expose three ports: Ψ, ∆, Θ. Because ports are just abstract identifiers, jobs
can decide to bind to them in any way they wish. For example, even though jobs A
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and B both declared a port with identifier Ψ, job A could bind that port to function
call GetData() and job B could bind it to SelfDestruct(). There is no correspondence
between port functionality across jobs and there is no stipulations dictating how a job
may use a port. The only stipulation tied to the ports system is that all messages sent
on the network have a specified port corresponding to the destination job. The column
in Table 2 labeled “Ports” shows that job B has decided to only allow job C to access it
on ports Π and Σ. Because job C’s protection domain lists itself as a remote job, and
the only port listed under the remote ports list is port identifier Υ, we can infer that port
Υ is used for all intra-job communication and the rest of the ports are used for inter-job
communication.

We have described the definitions of jobs and job protection domains. The respon-
sibility of enforcing these protection domains lies in the system architecture on which
the jobs execute, the network. Job protection domains have five essential attributes
equivalent to the attributes of process protection domains, except they relate to jobs
in a network rather than processes in memory. These attributes are: low latency data
access, physical hardware abstraction, data privacy, fault isolation, and fine-grained
control of inter-job communication. An implementation of job protection domains
must guarantee that all four attributes exist without compromise.

4 Network Management Units
For an efficient implementation of job protection domains, as described in Section
3, we present a network interface architecture called the Network Management Unit
(NMU). Just as processes are created and defined by a node’s operating system, jobs
are created and defined by a distributed operating system. Both of these operating sys-
tems are responsible for the protection domains of the entities they’ve created, thus
a node’s operating system is responsible for process protection domains and the dis-
tributed operating system is responsible for job protection domains. While each node’s
operating system manages only a single node’s memory system, the distributed oper-
ating system manages the network fabric on which all node’s communicate. We will
provide insights to the functionality necessary in a distributed operating system rele-
vant to job protection domains and NMUs, however, the details of distributed operating
system implementation is beyond the scope of this paper.

The MMU’s responsibility is to enforce the node’s operating system defined process-
based policies, and the NMU’s responsibility is to enforce the distributed operating
system defined job-based policies. Both of these devices are designed such that after
they are configured they are able to enforce policies in real-time without assistance
from their corresponding operating systems. Like all other network interface archi-
tectures, the NMU provides a physical interface that connects a processor node to an
interconnection network. This section describes the architectural data structures con-
tained within the NMU that enable job protection domains.
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4.1 Implementation
An NMU exists on each node as a client of the virtual memory system and as such has
access to data using virtual memory addresses (IOMMU functionality). For storage
of its own data structures, the NMU is allowed to allocate its own virtually mapped
physical memory pages. The NMU is able to access the page tables that correspond
to all local processes that are part of job protection domains (further referred to as
resident processes). With page table information, and IOMMU functionality, the NMU
has access to the memory regions of the resident processes and can perform memory
operations in their behalf. This is the first architectural feature towards supporting low
latency network access.

The NMU implements an indirect memory-mapped register set that gives each res-
ident process its own unique register file. This is accomplished with help from the
node’s operating system. The NMU responds to a wide range of physical memory
addresses and the operating system maps each resident process to the NMU using a
unique memory mapped address. The NMU keeps a table that maps each resident pro-
cess’s physical memory access address to its job ID and process ID. This table is called
the access address table. When a resident process accesses the NMU via its unique
memory mapping, the NMU uses the access address table to determine the process’s
identity, which consists of a job ID and process ID pair. This system removes the ability
for a resident process to falsify its identity to the NMU. Each process’s unique register
file contains status and control registers for communicating with the NMU (described
in Sections 4.3 and 4.4).

For each resident process, the NMU contains a table containing the privileges that
have been granted to it as part of its job. This table is called a privilege table. It
contains all the information describing which remote jobs may be accessed, the remote
processes within those jobs, and the ports that may be used. This is the information that
was discussed in Section 3 and found in Table 2. When a resident process attempts to
access the network, it specifies the destination by specifying its job ID and process ID.
This is known as a virtual network address. The process also specifies the destination
port. The NMU checks the process’s privilege table to determine if it has been given
access to the destination job, process, and port. If the proper privilege exists, the NMU
allows the message to enter the network. If the proper privilege does not exist, the NMU
blocks the message from entering the network. Resident processes are not allowed to
specify the physical network address of the destination. The NMU performs virtual-to-
physical network address translation before sending validated messages.

No privilege checking is needed for receive operations because all checking is per-
formed in the sender’s NMU. This is possible because all NMUs are governed by a
single trusted entity, the distributed operating system. As the NMU delivers the mes-
sage to the corresponding process, it informs the process of the virtual network address
of the sending process. Inherent identity authenticity is established and receiving pro-
cesses are guaranteed on a per-port basis that only those with granted privileges can
access them.

For implementation of virtual-to-physical network address translation, the NMU
contains a data structure called the job mapping table. The procedure of virtual-to-
physical network address translation requires information about virtual addresses (job
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IDs and process IDs) and physical addresses. Instead of holding physical network
addresses in the privilege tables, the NMU’s job mapping table contains the mapping
between process IDs and physical network addresses. This information is held for all
remote jobs that all resident jobs have access to. This allows the NMU’s privilege
tables to be smaller, densely encoded, and accessed in parallel with the job mapping
table. A lookup into the job mapping table is indexed by the destination job ID and
process ID and the output is the physical network address.

The division between the process’s memory space, the NMU’s process accessible
memory space, and the NMU’s private memory space is shown in Figure 2.

Process Memory Space
Process Accessed

NMU Memory Space
NMU Memory Space

Send Templates:

Receive Templates:

Receive Lists:

Buffers:

Control Register Sets: Job Mapping Table:

Privilege Tables:

Response Tables:

Receive Tables:

Access Address Table:Send Lists:

Figure 2: Process and NMU Memory Regions

4.2 Request-Response Protocols
As described so far, the implementation of job protection domains forces both parties
in a two-way transaction to have proper privileges of communicating with each other.
For most situations, this is sufficient, however, in many modern data centers there are
jobs that exist solely to provide responses to client requests. The protocols used in
these transactions are therefore called request-response protocols (RRPs). When using
RRPs, there are also situations where the requester desires the corresponding response
to be forwarded to an alternate recipient. Essentially, the requester is posting a request
to the responder in behalf of the designated response recipient.

To support RRPs, the NMU contains an extra data structure for each resident pro-
cess called the response table. The response table is a data structure that is a temporary
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holding area for one-time-use communication privileges. The response table supports
two-way and three-way RRPs. Each entry in the response table is indexed via a unique
identifier called a handle. Each entry contains: the requester’s virtual network address,
the recipient’s virtual network address, the recipient’s physical network address, and
the recipient’s port. Information about RRPs are contained in optional message head-
ers created by the NMU.

For an example, let’s examine a data center with three jobs: A, B, C. We will encode
jobs, processes, and ports as:

<job>:<process>:<port>

Figure 3 will be used to show the progression of a 3-way request-response transaction
between jobs A, B, and C. The right side of the figure shows the privileges obtained by
each job as time progresses. As shown at the top, job A has been given the privilege to
communicate with B:2:Φ and C:3:Ω. Jobs B and C have not been given any commu-
nication privileges. A:1 creates an RRP request message and informs its NMU of the
desire to send the request to B:2:Φ and that the response should be sent to C:3:Ω. The
NMU checks to see if job A has been given access to B:2:Φ, and if so, it generates the
physical network address of B:2. It performs the same check for C:3:Ω and generates
its physical network address. The NMU then sends the RRP request to B:2:Φ tagged
with an RRP request header that contains information specifying the desired recipient
by virtual and physical network address and port. This procedure occurs at Figure 3’s
timestamp 1.

Job A, Process 1
(Requester)

Job B, Process 2
(Responder)

Job C, Process 3
(Recipient)

Request

Response

Job B 
Processing 

Time

1

2

3

4

Time

Job B
φ 

Job A Job C
Ω 

Job B
φ 

Job A Job C
Ω 

Job B
φ 

Job A Job C
Ω 

Job B
φ 

Job A Job C
Ω 

Figure 3: 3-Way Request-Response Transaction

When the NMU of B:2 receives the request it stores an entry in its response table
identifying the requester’s virtual network address, the recipient’s virtual and physical

9



network address, and the recipient’s port. This is Figure 3’s timestamp 2, and as shown
in the diagram, process B:2 now has the privilege to communicate with C:3:Ω. As
the request is passed from the NMU to the corresponding process (further called the
responder), the handle of the response table entry is also given to the responder.

After the responder has processed the request and generated the response message,
it informs its NMU of the desire to send the message. Instead of specifying the typical
destination virtual address and port, the responder specifies the handle of the response
table entry it was given. The NMU retrieves the requester and recipient information
from the response table and the response is then sent to the specified recipient, which
is C:3:Ω. The response is tagged with an RRP response header that specifies the re-
quester’s virtual address. After the response table entry is used, it is deleted. No
virtual-to-physical network address translation is needed because the recipient’s physi-
cal network address is contained within the response table entry. This procedure occurs
at Figure 3’s timestamp 3. Notice that B:2’s privilege to communicate with C:3:Ω has
been removed.

When the recipient’s NMU receives the response message, seeing that it is tagged
with an RRP response message, gives the message to the recipient along with the re-
quester’s virtual network address. This procedure occurs at Figure 3’s timestamp 4 and,
as shown, doesn’t alter the privileges of any of the jobs.

This example illustrates a secured three-way RRP transaction where job B indi-
rectly acts on behalf of job A to give job C the information requested. Notice here that
jobs B and C both have no privileges of network communication but because others can
access them, they can act in behalf of other jobs. Also notice that upon receiving mes-
sages, processes inherently know the identity of the sender and falsification of identity
is impossible. Two-way RRP transactions are a simplified version of the RRP system
where the requester specifies itself as the recipient.

This system for RRP transactions is very useful for large jobs that service many
clients, such as Amazon’s S3 [15] or Google’s BigTable [8]. These jobs don’t actively
send network messages to other jobs, but instead exist to fulfill requests made by their
clients. Holding static mappings for all client jobs would require a very large job
mapping table and many privilege tables which would result in high latency access
times and wasted memory. The response table provides a mechanism that removes the
need for static job mappings and only requires enough storage to handle the number of
outstanding requests. Furthermore, along with all types of NMU transactions, the RRP
system provides inherent sender identity authenticity. This greatly reduces the code
complexity of large jobs that interact with many clients. Having inherent knowledge of
identity removes the need for identity credentials between jobs and processes.

4.3 Send Templates
The NMU provides applications with end-to-end zero-copy network access using a sys-
tem called templates. The templates system has many similarities with gather-scatter
lists found in common DMA engines, except that it works in connection with job pro-
tection domains and are specified on a per-port basis. The template system also con-
tains a type field which allows the use of immediate values as well as buffer references.
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To send a message the process first creates a send template that contains information
about the layout of a message, but does not contain any message data. The template’s
first element is a count that specifies the number of remaining elements. All remaining
elements describe a type of data, of which there are three types: immediate, fixed size
buffer, variable sized buffer. Immediate and fixed size buffer entries also specify a
length while variable sized buffer entries do not. The process then creates a send list
that contains the message’s information. The list’s first element is a state indicator that
is used to flag the process of send completion and must be marked active before using.
All remaining elements are immediate values, fixed size buffer pointers, and variable
sized buffer pointers with their corresponding lengths. Before sending a message, the
process writes the location of the send template and send list into its NMU send control
register. To send the message, the process writes the desired destination job, process,
and port into the NMU send control register, then triggers a write-only “send” register.
After checking permissions, the NMU transfers the data directly from the process’s
memory space to the network. After the message has been received at the endpoint, the
NMU informs the process of successful delivery via marking the send list as deactive
and optionally via an interrupt.

Send Template:
imm-4 fbuf-16 vbuf

Send List:
123 * *

Buffers:
“ThisIsMyKey”

“ThisIsMyValue”

Send Control Register:
* * B Ω

ST SL Job PortProcess

2

3

13A

Figure 4: Data Structures in Send Procedure

To illustrate the operation of send templates, let’s assume job A, process 1 (A:1) is
sending a write request to a key-value store. The key-value store is located in job B,
process 2 (B:2) and the port specified for write requests is port Ω. The store contains
tables of key-value maps identified by 32-bit identifiers. Keys are fixed sized 16 byte
character arrays and values are variable sized character arrays with a maximum size of
32 bytes. A:1 desires to map key “ThisIsMyKey” to value “ThisIsMyValue” in table
123. The process creates a send template with 3 type elements: 4-byte immediate, 16-
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byte fixed sized buffer, variable sized buffer. The process then creates an active send
list that contains: 4-byte table identifier, memory address of the 16-byte key buffer,
memory address the 13-byte value buffer, length of value buffer. The process writes the
memory location of the send template and the send list into the send control register as
well as the desired destination job, process, and port. These data structures are shown
in Figure 4. The message is assembled and sent after the process triggers the send
action by writing to the “send” register. The assembled message is shown in Figure 5.
After the message has been received at the destination, the NMU marks the send list as
deactive.

123 “ThisIsMyKey” 13 “ThisIsMyValue”

Message Payload:

B Ω

Dest
Job

Port
Dest

Process

2 A

Src
Job

Src
Process

1

Message Header:

Figure 5: Assembled Message

4.4 Receive Templates
The receiving procedure of the NMU utilizes receive templates and receive lists which
are similar to the send templates and send lists described in Section 4.3. The only
structural difference is that receive templates contain a maximum size for variable sized
buffers, whereas send templates do not. This is necessary because the process must
allocate the buffers before they are used. Receive templates are specified on a per port
basis and are held within a data structure called the receive table which is held for each
resident process. The receive table maps a single port to a single receive template,
however, for each receive template there is a fixed depth queue wherein references to
receive lists are stored. The receive list queue size is allocated at setup time, but the
entries are added and removed during runtime.

Before receiving messages, a process must register a receive template for each job
port and one or more receive lists for each receive template. All receive lists are marked
ready as they are linked with the receive list queue. When a message is received, the
NMU inspects the message header for the destination job, process, and port then it
performs a lookup into the receive table for the receive template and next available
receive list. Using the information in the receive template and receive list, the NMU
places the data directly into receive list and buffers specified by the receive list. After
having placed the message, the NMU marks the receive list as used, unlinks it from
the receive list queue, and optionally interrupts the process. When another message
is received on the same port, the next available receive list will be used. It is the
responsibility of the process to guarantee that enough receive lists are available for
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each receive template.

Receive Template:
imm-4 fbuf-16 vbuf-32

“ThisIsMyValue”

123 *

Receive List:

Buffers:
“ThisIsMyKey”

13

*

*

*

U

R

3

Figure 6: Data Structures in Receive Procedure

To illustrate the operation of receive templates, let’s continue from the example in
Section 4.3 and view the perspective of the key-value store as it receives the message
previously sent by A:1. In preparation to receiving messages on port Ω, B:2 creates
a receive template similar to the send template used by A:1 and registers it with port
Ω in the NMU. B:2 also creates two receive lists by creating two sets of buffers and
registers the two receive lists with the NMU. When the message arrives at B:2’s NMU,
the NMU inspects the message header (shown in Figure 5) and determines that the
destination is B:2:Ω. A lookup into B:2’s receive table results in the designated receive
template and the next available receive list. Using the receive template and receive list,
the NMU places the message data in the receive list and corresponding buffers. The
NMU then marks the receive list as used, removes it from the receive list queue, and
optionally interrupts the process. Figure 6 shows the state of the receive data structures
after having received the message sent by A:1.

The NMUs port-oriented template system provides a complete end-to-end zero-
copy solution that places message data right where the user needs it and frees the pro-
cessor from performing wasteful copying.

4.5 Management
As a network interface architecture, the NMU is an entity of the network in the dis-
tributed system. As such, control over its functionality lies within the responsibilities
of the distributed operating system. Even though the NMU stores data structures within
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the system memory of its corresponding node, it is the distributed operating system that
fills these data structures with the policies that regulate job protection domains. The
distributed operating system uses special control messages to communicate with the
NMUs in the network. These messages control the construction, evolution, and decon-
struction of job protection domains.

5 Analysis
To illustrate the effectiveness of the Network Management Unit (NMU) we compare
it to the effectiveness of the Memory Management Unit (MMU) at enabling process
protection domains. The content in Sections 2 and 3 argue that a true protection domain
only exists if the following attributes are present: low latency data access, physical
hardware abstraction, data privacy, fault isolation, and fine-grained control of inter-
domain communication. This section analyzes the NMU’s effectiveness in providing
these attributes.

Low latency data access: The NMU provides low latency data access by allowing
processes to interact with it directly and utilizing an efficient port-oriented template
system that supports an end-to-end zero-copy solution. Without excessive concern of
how and where data is stored, programmers are able focus on the application under de-
velopment and spend less time overcoming data access related performance obstacles.

Physical hardware abstraction: The NMU implements an efficient system for vir-
tual network addressing that allows programmers to ignore the complexities of physi-
cal network addressing and management. This job-oriented virtual network abstraction
supports high productivity without compromising performance.

Data privacy and fault isolation: The NMU provides strict isolation between jobs
on a network as jobs are guaranteed that their processes can’t be accessed by unprivi-
leged jobs. The NMU stops all invalid network accesses before they enter the network.
Isolation allows job implementation to be greatly simplified because jobs are assured
that received messages could have only been generated by authorized entities. Be-
cause sender identity authenticity is inherently built into NMU-enabled job protection
domains, the use of identity credentials is not needed. Furthermore, sender-based job
isolation makes it impossible to post a denial-of-service attack from one job to another
where communication privileges were not previously established. This is true regard-
less of whether the attack is malicious or accidental.

Fine-grained control of inter-domain communication: On top of enforcing poli-
cies that control which processes get to communicate, the NMU enforces policies that
control in which ways they are allowed communicate. This is contained in the NMU’s
ports system. This is a place where the NMU excels over the MMU. For shared mem-
ory inter-process communication, the MMU regulates who has access and which per-
missions they have. In this regard, the NMU works just like the MMU, except the per-
missions are application specific through the user programmable ports system. Ports
allow an application to divvy out permissions on a fine-grained basis so that applica-
tion functionality and sender identity authenticity are always maintained and easy to
use. The NMU’s mechanism for one-time-use privileges in request-response protocols
allows jobs to limit their interaction with other jobs on a time-based level.
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6 Discussion
The NMU-enabled network we’ve presented provides an efficient platform for dis-
tributed application development. There are few additional implementation aspects
that can affect the efficacy of the job protection domains the NMU provides.

6.1 Integration with the CPU
The placement of the NMU within the network can have a significant effect on its
performance. The network access latency of a network interface located on a common
peripheral bus (e.g. PCI Express [2]) is bounded by the latency of the bus. Moving
the network interface closer to the processor by locating it on a coherent processor
interconnect (e.g. Intel QuickPath Interconnect [21]) allows the network interface to
be accessed faster and have quicker access to system memory. Locating the network
interface on same die as the processor (e.g. IBM PowerEN [6]) would yield even
lower access latencies as the network interface can be accessed as fast as other on-chip
devices. Some designers have taken the opposite approach and have moved the network
interface into the network by integrating it with a network switch (e.g. Cray Gemini [1]
and Cascade [13]). While this doesn’t produce low network interface access latencies,
the end-to-end latency is reduced because two hops have been removed. These trade-
offs must considered when determining the optimal placement of the NMU.

6.2 Trusting the Node Operating System
The optimal location of the NMU data structures depends on the trust model the system
has for the node operating systems. For establishing job protection domains, collab-
oration between the distributed operating system and the node operating systems is
needed. The node operating system is expected to provide two functions. First, it must
not allow the NMU’s allocated memory to accessed by any entity other than the NMU.
Second, it must ensure each resident process has a unique physical page mapping to the
NMU and that the NMU contains the proper mapping between access address ranges
and job ID and process ID pairs.

For situations where the node operating system can’t be trusted with access to the
NMU’s data structures, we propose two solutions. The first option is the NMU stores
all its data structures in the system memory and the NMU computes and stores digital
signatures for each entry of the structures. This solution can’t block tampering but it
can detect it and take appropriate actions. This solution incurs an overhead every time
an entry is altered, which for structures like the response table or receive table could be
very often. The second option is the NMU stores all its data structures in a dedicated
memory that is only accessible by the NMU. This solution doesn’t incur the overhead
associated with the first solution, however, it increases the system cost by having a
separate memory for the NMU.

If the node operating system doesn’t properly maintain the integrity of the unique
physical page mapping each resident process has with the NMU, the job protection do-
mains may become corrupt, however, the severity of corruption is only within the jobs
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the node has access to. Protection domain corruption due to faulty node operating sys-
tems can’t span wider than the domains the operating system knows about. This is true
because each node only contains the job mappings of the jobs the resident processes
are members of and the remote jobs they have access to.

6.3 Job Mapping and Node Allocation
The methods in which jobs are created, nodes are allocated, and network addresses
are computed can have a significant effect on performance. It is important that the
virtual-to-physical network address translation be efficient as all messages, besides
RRP responses, sent by the NMU require it. It is also important that the job mappings
be small as they are held within the job mapping table of the NMU.

Allocating nodes for a job in a contiguous physical network address range has the
benefit of having very dense job mappings and fast translation computation. Unfor-
tunately, contiguous allocation is inflexible and leads to poor system utilization. At
the other extreme, one-by-one node selection results in mapping tables that can flex-
ibly utilize the entire system. Due to the large mapping table, the virtual-to-physical
translation may consume many cycles. A hybrid approach of the these two methods
is to allow a job to be allocated to multiple contiguous sets of nodes. This allows the
mapping to be dense and flexible.

7 Related Work
Data center stacks such as Hadoop [28], Amazon Web Services [15], Windows Azure
[7], and OpenStack [27] provide job-level scheduling, resource management, node al-
location, and communication abstraction, however, they aren’t able to provide strict
job-level isolation due to the limitations of the underlying network infrastructure.

VLANs offer a very coarse-grained hardware isolation solution, however, the ar-
rival of new jobs is several orders of magnitude more frequent than the rate at which
VLANs can be updated and switches reconfigured [17] [24].

In efforts to provide isolation, some data center operators use switches that perform
5-tuple filtering that filters traffic based on rules that match on protocol, source address,
destination address, source port, and destination port [20]. NIC-based offload engines
have been proposed [26] [11] that are able to perform 5-tuple filtering in the receiver’s
NIC. Network switches and routers are available that perform this function close to
the sender in the top-of-rack switch. True sender based filtering could be achieved if
the NIC-based offload engines were configured to filter outgoing traffic. Even in this
scenario, the rules these systems comply to relate to physical endpoints and abstract
port numbers and none of them are aware of jobs or processes.

The InfiniBand architecture provides a mechanism called protection domains that
allow a consumer to control which set of its Memory Regions and Memory Windows
can be accessed by which set of its Queue Pairs [3]. Because these domains are placed
upon queue pairs created by processes, job-level protection domains could be achieved
if all processes within a job shared the same domain. Furthermore, inter-job communi-
cation could be achieved by sharing protection domains between jobs. The downside

16



to InfiniBand protection domains is that they don’t provide isolation because they are
enforced at the receiver. They also don’t provide a fine-grained communication model
on which specific privileges can be placed.

MPI provides a high level view of jobs and abstracts the communication details
from the programmer [25]. This provides high productivity, however, it reduces per-
formance as it is implemented in software. It also provides no isolation as filtering is
performed at the receiver.

If performance was not a concern, the NMU implementation could be implemented
within the operating system’s network stack. This would provide the reliability of
a hardware-based NMU system, but would suffer from very low performance which
would in turn reduce productivity due to high data access latencies.

8 Conclusion
In this paper we have introduced the network management unit (NMU) that provides
low-latency inter-process communication while enforcing a job-based isolation policy.
Low-latency communication is achieved by providing protected user-level memory-
mapped access to the network and by using send and receive templates that allow
the arguments of complex messages to be marshalled and unmarshalled by hardware
without copying. A job-based protection policy that matches the structure of many
distributed applications is implemented in a scalable manner by associating lists of
privileges (accessible jobs and ports) with each job. Request-response protocols are
facilitated by a mechanism that allows single-use privileges to be passed as arguments.
Message authorization is checked at the sender to prevent unauthorized messages from
congesting the network. Processes within each job are addressed via network virtual
addresses that are translated to physical nodes in the NMU.

The NMU and the job-based protection abstraction it supports facilitates the con-
struction of efficient distributed applications. A typical application is constructed from
a number of jobs (web tier, key-value store, database, etc.) that interact in a controlled
manner as governed by the set of privileges. Job-based protection with sender-side au-
thentication could be implemented by patching together existing mechanisms such as
InfiniBand remote keys and 5-tuple filtering in a top-of-rack switch. However the NMU
provides an integrated solution that reduces overhead and implementation complexity
compared to a patchwork implementation.

The NMU provides efficient run-time mechanisms to support a distributed protec-
tion model much in the way an MMU provides run-time mechanism to support mem-
ory protection within a single node. The NMU allows a distributed operating system to
configure a set of jobs and privileges much in the way an MMU allows a node operating
system to configure a set of processes and memory segments. The efficient run-time
mechanisms of the NMU allow distributed applications to be written with strong secu-
rity without incurring the application complexity or run-time overhead associated with
application-level software implementations.
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