

EE482C Final Project Report

Data-level, Instruction-level, and Thread-level
Parallelism on the Imagine Stream Processor

James Bonanno
Rex Petersen

Suzanne Rivoire

June 6, 2002

EE 482C Final Report
June 6, 2002

1

Overview

Using the Imagine stream processor as a baseline, we explored the effects of exploiting

parallelism along three axes: data- level parallelism (DLP), instruction- level parallelism

(ILP), and thread- level parallelism (TLP). We developed a cost model to evaluate

different configurations in terms of area, and we wrote a JPEG-like encoder in StreamC

and KernelC as a sample application on which to evaluate performance. We then

selected five different cluster configurations on which to test ILP. Since the tools

prevented us from directly simulating DLP or TLP, we developed a method to extrapolate

the ILP results to these cases.

Our ILP results show that cluster configurations at least as large as the original Imagine

configuration exhibit the best balance between area and kernel performance. They also

show that for kernels well matched to the cluster configuration, the microcode size does

not generally explode with increased ILP.

Performance / cost analysis for our JPEG application indicates that starting from the

configuration of Imagine, it is first beneficial to exploit DLP by adding to the number of

clusters. After the total number of clusters reaches 32, it is more efficient to divide them

among several thread execution units – each having 8 clusters. For the JPEG application,

changing the interna l configuration of a cluster (targeting ILP) is not beneficial.

We concluded that the current Imagine processor should be the configuration of choice

for single-threaded execution. In order to make recommendations about multithreaded

execution, we tried to identify common types of kernels and the hardware best suited to

each. Our results are speculative but suggest that a multithreaded stream processor

should include a stripped-down, low-ILP execution unit in addition to a more powerful

execution unit like the current Imagine processor.

Finally, we recognize that our results are preliminary and are weakened by our inability

to directly test DLP and TLP and by some assumptions made in our models. We suggest

future work to eliminate these sources of uncertainty.

EE 482C Final Report
June 6, 2002

2

1. Introduction
Our goals as stated in our proposal were to find the costs and bottlenecks of extreme DLP, ILP,

and TLP and to recommend an optimal balance among the three in terms of cycle count and area.

During the course of the project, we set the additional goal of classifying common types of

kernels as a step to recommending non-uniform execution units for thread-level parallelism.

We developed the following tools to further these goals:

• A cost model normalized to the area of the original Imagine processor

• A JPEG-like encoding application

• Five different machine configuration files to test ILP

• A method for extrapolating ILP results to DLP and TLP

We present conclusions about:

• The performance and performance-area relationship of different levels of ILP

• The relationship between increased ILP and microcode size

• The best way to exploit DLP and TLP

• Tentative classifications of kernels and suggestions for thread execution units

Section 2 describes the sample applications we used for testing, and Section 3 describes our cost

model. Section 4 explains our ILP tests and results, and Section 5 shows how we extrapolated

these results to DLP and TLP. Section 6 presents our findings on classifying kernels, and

Sections 7 and 8 conclude and recommend future research.

2. Sample Applications
We used several sample applications in order to evaluate performance of various machine

configurations. Our analysis focused primarily on versions of a JPEG-like encoder, which we

wrote. Additionally, we did limited analysis on the MPEG application provided with the Imagine

tools as well as our implementation of a wavelet transform.

2.1 JPEG-like encoder

We chose to implement a JPEG-like encoder in StreamC and KernelC as a typical media

application. It is part of the MediaBench [1] benchmark suite, and is a widely used image format

EE 482C Final Report
June 6, 2002

3

standard. Our implementation is a modification of the baseline sequential codec, illustrated in the

following figure [2].

Figure 1: DCT-Based Decoder Processing Steps

For the sake of simplicity, we did not implement an entropy encoder, such as Huffman coding.

Rather, we performed simple one-dimensional run-length encoding of the quantized coefficients.

For source image data, we used a sample 8x8 portion extracted from a real image [2]. We also

created larger images by repeating this 8x8 sample.

The following table presents our KernelC kernels and their variations.

Kernel Description Variations/notes
load_cos Loads a stream of 128 cosine

values into a persistent array used
by some versions of dct.

Not used in Taylor series implementation
of dct.

gen_idx_str Given microcode variables
indicating which 8x8 segment of
the image is being processed,
generates an index stream of
length 64.

Implementation changes slightly as the
number of clusters are varied. This is not
taken into account with the performance
model described later.

dct Computes one DCT coefficient
given the coordinates of that
coefficient, and a stream of 64
pixel values of the current 8x8
segment.

Either uses a lookup table to compute
cosine values, or uses a Taylor series
approximation.

EE 482C Final Report
June 6, 2002

4

quantize Divides elements of the first input
stream by elements of the second
stream, and rounds the result to
the nearest integer.

This kernel actually performs a divide
operation. If the second input stream’s
data were reformatted as its reciprocal, this
operation could be replaced with a
multiply.

rle1 Identifies the locations of “runs”
in the image and uses conditional
output streams to produce their
values and locations.

In the sample image segment, there are 9
runs.

rle2 Transforms the stream of run
length values and locations into a
stream of run length values and
lengths.

Table 1: JPEG kernels

The equation for a discrete cosine transform (DCT) is:

When cosine is computed with a Taylor series approximation, the following formula is used:

()
()!2

1)cos(
2

0 n
x

x
nnN

n

⋅−≈ ∑
=

In our case, N=5, and we have pre-computed the constant multiplier for each term.

2.2 MPEG encoder and wavelet
We also examined kernel schedules from our fast wavelet transform application done as a

homework assignment for this class, and for the MPEG sample application provided in the

Imagine toolset. We did not simulate these programs in isim.

3. Cost Model
In order to compare different parallel configurations, we developed an area-based cost model.

We derived a formula for cost that is based on the number of functional units in each cluster; the

total number of clusters; and the total number of threads. This cost model is meant to give a

relative area estimation for the region containing the ALU clusters and microcontroller of an

0,1)(

0,
2

1
)(

)
16

)12(
cos()

16
)12(

cos(),()()(
4
1

),(
7

0

7

0

≠=

==

+
⋅

+
⋅= ∑∑

= =

aaC

aaC

vyux
yxfvCuCvuF

x y

ππ

EE 482C Final Report
June 6, 2002

5

Imagine-like processor. This model does not include the area of SRF, memory system, and

external interfaces. We chose to express cost roughly in terms of mm2 and then scale the result so

that the cost of Imagine is 100. Each part of the cost model is described in Table 2.

Variable Value Description
N Number of <subscript> (i.e., NC = number of clusters)
A Area of <subscript> (i.e., AC = area of a cluster)
Subscripts T = Threads C= Clusters SP=Scratchpad
For N & A A = Adder M = Multiply D = Div/Sqrt
 ALU= A, M,&D CU=CommUnit U=uController UM=ucMemory
NF Number of functional units / cluster = NA + NM + ND + NSP + NCU
AUC 0.5 Average area of microcontroller decode logic / ALU in cluster
pe ¼ Number of external ports per functional unit
b 32 Data width of the architecture
w 1.8 Wire pitch (typically 0.64 –2µm/wire in a 0.18µm process)
OF 0.75 Overlap factor. % of functional unit area that switch can overlap

Table 2: Variables used in the cost model

3.1 Estimating cluster switch sizes

Each cluster has a switch that allows each functional unit

to send data out of the cluster or store data into the local

register files for other functional units. The area of this

switch grows quadratically with the number of functional

units inside the cluster. On the right is a diagram taken

from Register Organization for Media Processing [3],

which details a way to model a 2D version of such a

switch. The basic formula for the switch size is:

SwitchSize = (pe N + 2N)(pe N + N) * w2 * b2

To estimate the size of this switch, we used a wire pitch of 2 µm to allow enough room for power,

ground, and noise shielding wires. Using these values and converting to mm2, the formula

becomes:

 SwitchSize = 2.81* N2 * 22 * 322/ 106 = 0.012 N2 ≈ N2 /100

Taking this result and solving for wire pitch, we get 1.86 µm, which is still reasonable. We used

the same formula for both the internal cluster switch (NF
2 /100) and the intercluster

communication switch (NC
2 /100).

EE 482C Final Report
June 6, 2002

6

3.2 Cluster Area

To estimate the area of the functional units we again used Imagine as a reference, where the

cluster contains 3 adders, 2 multipliers, 1 divider, 1 scratchpad, and 1 communication unit, for a

total size of 7 mm2. In our model, we scaled the number of scratchpads and communication units

by adding one for every 5 ALUs. We estimated an area of 1 mm2 for each multiplier or divider

and 0.5 mm2 for adders, scratchpads, and communication units, which makes:

AF = 0.5 NA + NM + ND + 0.5 NSP + 0.5 NCU
NSP = NCU = max(1, int(NALU/5))
AC = ClusterArea = max(AF, OF * SwitchSize) + (1- OF) * SwitchSize
AC = max(AF, OF * NF

2 /100) + (1- OF) * NF
2 /100

3.3 Microcontroller

The microcontroller size is constant as DLP increases, since every cluster receives the same

instruction. For TLP, each thread requires an additional microcontroller. The more interesting

aspect of our cost model was how we chose to scale the microcontroller size as ILP increases. As

described in Section 4.3, we observed that the total microcode size in terms of bits did not grow

dramatically as we added functional units to each cluster. Therefore, the memory storage part of

the microcontroller can remain constant, but the control logic and instruction decoders will have

to grow as we scale ILP:

AU = AUM + AUC * NF

3.4 Complete formula for cost model

Cost = NT (NCAC + NC
2 /100 + AU)

Cost = NT (NC [max(AF, OF * NF
2 /100) + (1- OF) * NF

2 /100] + NC
2 /100 + 12 + 0.5 NF)

The main limitation of this cost model is that is does not

consider the entire chip area, which was beyond the scope

of this project. It is an effective model to use when

comparing various implementations that are similar in size,

but not as useful when comparing configurations whose

areas vary by more than 2x. From the layout of Imagine

shown at the right, one can see that the area considered in

our cost model in the cluster and microcontroller regions is

about 40% of the chip. Therefore a cost of 200 may only

increase the total chip area by 40%. A better model of the

entire chip area would add a scaling model for the SRF and other components.

EE 482C Final Report
June 6, 2002

7

4 8 12 16 20 24 28 32 36 40 44 48

4

8

12

16

20

24

28

32

ALUs / Cluster

N
u

m
 C

lu
sters

Plot of Cost Model
1900-2000
1800-1900
1700-1800
1600-1700
1500-1600
1400-1500
1300-1400
1200-1300
1100-1200
1000-1100
900-1000
800-900
700-800
600-700
500-600
400-500
300-400
200-300
100-200
0-100

Figure 2: Plot of cost model function

4. Measuring Instruction-level Parallelism
To simulate varying degrees of instruction-level parallelism, we created five representative

machine configurations (.md files) and examined results for three different applications. We

studied the JPEG application the most closely, but we also looked at kernel schedules for the

provided MPEG application and for our fast wavelet transform in order to check our intuitions.

4.1 Cluster configurations

The cluster configurations we tried are summarized below. Wimp exhibits extremely low ILP;

Stud is extremely bloated. All of the machine configurations we tried have eight clusters.

Unfortunately, we were not able to actually scale the number of scratchpads and communication

units in our .md files as detailed in our cost model and as reflected in the area numbers. Our

results should not be weakened by this limitation, however, since the kernels we analyzed most

heavily were almost free of scratchpad and communication operations.

Name #ADD #MUL #DIV Norm. Area Instr. Width (bits)

Wimp8 1 1 1 70 375
Tin8 3 1 2 100 478

Gold8 3 2 1 100 497
Straw8 6 4 2 181 705
Stud8 12 8 4 352 1129

Table 3: Five cluster configurations

EE 482C Final Report
June 6, 2002

8

4.2 Efficiency of the JPEG application

The performance per unit area (efficiency) is shown in Table 4 for both the kernel cycles and for

the overall JPEG application. The numbers for the overall application reflect a high proportion of

StreamC overhead, which is exaggerated because we used a small input, meaning less time spent

in the kernels, and because we were unable to optimize our StreamC code. We suspect that the

kernel performance numbers are therefore more representative.

Name Kernel efficiency Overall efficiency
Wimp8 1.14 0.82

Tin8 0.86 0.54
Gold8 1.00 1
Straw8 0.72 0.97
Stud8 0.38 0.81

Table 4: ILP data for the JPEG application, normalized to Imagine

Our data show that, at eight clusters, Gold8 and Straw8 yield approximately equivalent

performance per unit area. Stud8, however, suffers because of “wimpy” kernels that are

bottlenecked by short-stream effects and light computation.

4.3 ILP and microcode size

For kernels that are well matched to their execution hardware, increasing ILP does not necessarily

increase microcode size; in fact, unrolled code on a larger execution unit is often smaller and

faster than code that is merely pipelined on a smaller unit. We only observed code size bloat in

two cases. The first is when hardware is grossly underutilized, meaning that a large proportion of

the instruction width is unused. The second is when code is unrolled extensively for tiny

performance gains on a large execution unit. The chart below shows this principle for the dct

kernel, which is representative of the computationally heavy kernels we observed. The chart

shows that code size on Stud8 does bloat when it is unrolled to achieve a small performance gain,

but that no tradeoff between ILP (and thus increased performance) and code size exists in general.

Name Directives Main loop cycles Code size (B)
Wimp8 pipeline(1) 55 6937

Tin8 pipeline(1) 55 8724
Gold8 pipeline(1) unroll(2) 30 5964
Straw8 pipeline(1) unroll(2) 15 4583

Stud8 pipeline(1) unroll(2) 7.5 7339

Stud8 pipeline(1) unroll(4) 7.25 9314

Table 5: ILP and code size. The directives given for each kernel are the ones that yielded optimum
absolute performance.

EE 482C Final Report
June 6, 2002

9

5. Extrapolating Data-level and Thread-level Parallelism
Because the tools prevented us from changing the number of clusters, we developed a method to

extract DLP and TLP performance data using the kernel schedules for the various cluster

configurations. This approach neglects all execution time due to non-kernel events, such as

loading microcode, and perhaps more significantly , memory operations.

From the microcode (.uc) file for a scheduled kernel, we can directly determine the number of

instructions in each basic block. Furthermore, we know which of these blocks correspond to the

kernel’s loop body and which are outside the loop. For kernels with one loop, we model its

execution time as:

()[] okeNumKernInvlesNonLoopCycrNumLoopIteLoopCyclesNumCycles ⋅+⋅=

LoopCycles and NonLoopCycles are extracted from the .uc file. NumKernInvoke is a property of

the StreamC code calling the kernels. NumLoopIter depends on numTimes (determined from

either the amount of data sent to the kernel, or a constant, or dependent on the specific data sent

to the kernel), numClusts (the number of clusters), and unrollAmt (the extent to which the loop is

unrolled), as expressed in the following formula.









⋅
=

unrollAmtnumClusts
numTimes

MAXrNumLoopIte ,1

Knowing the length of a single kernel invocation and understanding the StreamC dependencies

between kernel invocations, it is possible to develop schedules for the kernels distributed among

thread execution units (TEUs). Performance data can then be extrapolated from the ILP data.

For the case of the JPEG application, the execution time of DCT is about 98% of the total

execution time. Therefore pipelining the different stages of the process would not be beneficial.

So for increased TLP, different TEUs would process different 8x8 segments of the image.

The following figures shows how efficiency of the JPEG applications changes as support for DLP

varies. The results are normalized to the efficiency of one Gold8 TEU running the particular

application.

EE 482C Final Report
June 6, 2002

10

The first result is for the JPEG-Taylor implementation. It is interesting to note that for this

application, Gold8 (Imagine) is the most efficient. Also, going from 8 to 16 clusters gives nearly

identical efficiency. This leads us to the tentative conclusion that given more area, using it to

exploit DLP would be most cost-effective first step. These results also show that for the

configurations targeting increased ILP (Straw and Stud), efficiency drops rapidly after DLP is

increased past a certain point. Tin shows very low efficiency for this application because we

replaced divide instructions by multiplies whenever possible. As expected, with kernels that have

no division instructions, replacing a multiply unit with a divide unit is not at all beneficial.

JPEG-T DLP: Efficiency (Normalized to gold8)

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16 32

Number of Clusters

P
er

fo
rm

an
ce

 /
C

o
st

gold
straw

wimp

stud

tin

Figure 3: JPEG (Taylor) DLP Efficiency vs. Num. Clusters

The following figure shows the performance of JPEG-D, that is the version of JPEG that is

divide-limited, or Dumb, since divisions by a constant were not transformed into multiplications.

JPEG-D DLP: Efficiency (Normalized to gold8)

0

0.5

1

1.5

2

1 2 4 8 16 32

Number of Clusters

P
er

fo
rm

an
ce

 /
C

o
st

gold

straw
wimp

stud

tin

Figure 4: JPEG (Lookup, Divide) DLP Efficiency vs. Num. Clusters

EE 482C Final Report
June 6, 2002

11

It can be seen that in this case, the Tin configuration is the most efficient, since it has traded a

multiply unit for an additional divide unit. Comparing this figure to the previous one

demonstrates the fact that the specific implementation of a kernel can drastically affect

performance. Certain types, or implementations, of kernels are significantly more efficient on

certain cluster configurations.

In the following graph showing the efficiency for JPEG-S, the smart lookup-table version that has

divides converted into multiplies, we see that the Tin configuration does not fare as well in the

dumb implementation. This does show the advantage of the Tin configuration on a kernel that is

divide-limited.

JPEG-S DLP: Efficiency (Normalized to gold8)

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16 32

Number of Clusters

P
er

fo
rm

an
ce

 /
C

o
st gold

straw

wimp

stud

tin

Figure 5: JPEG (Lookup, Smart Mult) DLP Efficiency vs. Num. Clusters

The next two figures show how the efficiency of JPEG (Taylor) changes as a constant number of

identical clusters are redistributed among varying numbers of TEUs.

JPEG-T TLP: Efficiency for Gold (normalized to 1 Gold8)

0

0.2

0.4

0.6

0.8

1

1.2

1.0 2.0 4.0 8.0 16. 32.

Number of TEUs

p
er

f/
co

st 8 total clusters

16 total clusters
32 total clusters

Figure 6: JPEG (Taylor) TLP Efficiency vs. Num. TEUs of Gold

EE 482C Final Report
June 6, 2002

12

Because there are no dependencies among the different TEUs, we assume ideal speedup in terms

of raw performance. This is why one Gold8 has the same efficiency as two Gold8s, which is the

same for four Gold8s. 32 or more total clusters should be arranged into multiple TEUs, while it is

not beneficial to do so with configurations having fewer numbers of total clusters.

JPEG-T TLP: Efficiency for 32 Total Clusters
(Normalized to 1 Gold8)

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16 32

Number of Threads

P
er

fo
rm

an
ce

/C
o

st

32TC,gold

32TC,straw
32TC,wimp
32TC,stud

Figure 7: Efficiency for 32 Total Clusters vs. Num. Threads
8 or 16 total clusters yields the same graph, shifted to the left.

The TLP results in actuality are a restatement of the DLP results for this application, namely that

using Gold8 or Gold16 configurations gives the highest efficiency. Having multiple TEUs of

those configurations is more efficient than constructing single TEUs with additional clusters.

6. Classifying Kernels
We made a preliminary effort to identify common types of kernels and the execution hardware

best tailored to each. Our wavelet and JPEG code contained two major types of kernels,

described below. However, the kernels in the provided Imagine sample applications were more

intense than ours and exhibited different characteristics; therefore, we recommend that further

attempts to classify kernels examine the work of many different programmers.

6.1 Wimpy kernels

Wimpy kernels are kernels that run approximately equally well on all five hardware

configurations. These kernels tend to be computationally light and hard to optimize because of

intercluster communication and short stream effects that prevent unrolling. In our JPEG program,

EE 482C Final Report
June 6, 2002

13

gen_idx_str and the run length encoding kernels were wimpy, as were all of our wavelet kernels

except FIR. Wimp8 yields the best efficiency for these kernels.

6.2 Functional unit-limited kernels

The rest of our kernels were limited by a single functional unit; doubling or quadrupling the

number of that functional unit doubled or quadrupled the performance of that kernel. These

kernels were most efficient on Straw8 and Stud8, since double or quadruple speedup over Gold8

could be achieved without as large an increase in area.

7. Conclusions
Below are our conclusions with respect to the goals stated in our proposal.

7.1 Consequences of pushing parallelism

ILP: The effects of adding additional functional units in each cluster were very kernel-specific,

helping kernels that were FU-limited, but leaving wasted resources for wimpy kernels. The cost

of the additional microcontroller and the internal cluster switch make configurations with greater

than 10-12 ALUs per cluster show diminishing returns.

DLP: To maintain a constant number of ALUs when we pushed in the DLP direction, we had to

use wimpy clusters with few ALUs. The main overhead then became the cost of the scratchpad

and communication unit in every cluster amortized over fewer ALUs.

TLP: The additional microcontroller for every thread is the major cost when pushing TLP. The

big win could come from a small TEU that performs as well as a larger one for some kernels at a

fraction of the cost. Wimp8 is therefore optimal for the many wimpy kernels.

7.2 Preliminary recommendations on aspect ratio

For a single-threaded implementation, the aspect ratio of Imagine achieves a high efficiency on

the applications we tested. As a rule of thumb, the best aspect ratios will be those that allow as

many ALUs on the chip as possible at minimum cost. Because of the NF
2 and NC

2 terms in the

cost model there is a first-order minimum cost point with this aspect ratio:

prALUsOnChiTotalNumbeNN CALU ==

EE 482C Final Report
June 6, 2002

14

For a chip with 48 ALUs like Imagine, this would be a value of about 7. Because the

microcontroller area grows with Nf, it is better to have NALU < NC so setting NALU = 6 and NC =

8 is a very minimal cost implementation for 48 ALUs. For a very simple performance model that

assumes every ALU on a chip can be fully utilized, a plot of total ALUs / cost is shown below

(again, the values have all been scaled so that the value for Imagine is 100).

4 8 12 16 20 24 28 32 36 40 44 48

4

8

12

16

20

24

28

32

 ALUs / Cluster (ILP)

N
u

m
 C

lu
sters (D

L
P

)

Total ALUs / Cost

140-150

130-140
120-130

110-120

100-110
90-100

80-90

70-80
60-70

Figure 7: Plot of total ALUs/cost as a simple efficiency metric

Note that this plot assumes full utilization of every ALU, which is a major simplification of

reality that will especially break down at high numbers of ALUs/cluster. Even with this

limitation, there are some interesting points to note about this plot:

• The dark blue region is the best place to be from a performance/cost standpoint.

• With 8 clusters, each subsequent ALU added to a cluster increases the performance by
about 10% until the ALUs/cluster reaches 8, after which the incremental gain drops.
Imagine has 6 ALUs/cluster so it may benefit from adding 2 more.

• 16 clusters with 8 ALUs/cluster would be 30% better than Imagine.

• The jagged edges are caused by the scratchpad and communication units that are added
for every 5 ALUs per cluster.

As fabrication processes improve and more area is available , we would recommend:

1. First push in the DLP direction to 16 or 32 clusters.

2. Push ILP slightly by adding another DIV unit. Fully pipelining the single DIV unit
would also be beneficial.

3. Push TLP, since results suggest that multithreading when you hit 32 clusters is beneficial.

EE 482C Final Report
June 6, 2002

15

4. Explore non-uniform TEUs. Wider ILP TEUs for computationally intensive kernels,
smaller custom clusters for wimpy kernels, etc.

8. Recommendations and Future Work
This section contains our recommendations for the developers of the Imagine toolset and for

researchers who wish to extend our work.

8.1 Improving the Imagine toolset

We have two suggestions for improving the Imagine toolset. The first is to automatically

generate .md files with a script that prompts the user to enter the number and kinds of functional

units per cluster and the number of clusters. This task should be straightforward and would

alleviate the tedium and difficulty of manually making the many changes to .md files.

Our second suggestion is to have the Imagine compiler change divide operations in kernels to

multiply operations whenever possible, since the divide unit is not fully pipelined and therefore is

less efficient. Perhaps the compiler could detect exceptions to this rule as well, like kernels that

fully utilize the multiplication units already.

8.2 Exploring thread-level parallelism and kernel classification

Additional work can be done to further classify types of kernels from more applications and

coding styles. Once a set of targeted kernels is understood, explore non-uniform TEUs that will

perform well on these kernels with minimal hardware. We also recommend that future

researchers continue use of the “wimp” and “stud” nomenclature, which we are very proud of.

8.3 Scalability

Further research could take scalability into account more fully than we did. Future researchers

may want to develop a cost model that scales the SRF and other areas of the chip that we left

constant, particularly as they study TLP. Additionally, our inability to actually add scratchpads

and communication units would seriously hinder our ability to test a wider range of applications.

EE 482C Final Report
June 6, 2002

16

9. References

1. “MediaBench Home”, http://www.cs.ucla.edu/~leec/mediabench/

2. Wallace, Gregory K. "The JPEG Still Picture Compression Standard",

Communications of the ACM, April 1991 (vol. 34 no. 4), pp. 30-44.

3. Rixner, Scott et al. “Register Organization for Media Processing”,

p.4

