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Overview 

Using the Imagine stream processor as a baseline, we explored the effects of exploiting 

parallelism along three axes: data- level parallelism (DLP), instruction- level parallelism 

(ILP), and thread- level parallelism (TLP).  We developed a cost model to evaluate 

different configurations in terms of area, and we wrote a JPEG-like encoder in StreamC 

and KernelC as a sample application on which to evaluate performance.  We then 

selected five different cluster configurations on which to test ILP.  Since the tools 

prevented us from directly simulating DLP or TLP, we developed a method to extrapolate 

the ILP results to these cases. 

 

Our ILP results show that cluster configurations at least as large as the original Imagine 

configuration exhibit the best balance between area and kernel performance.  They also 

show that for kernels well matched to the cluster configuration, the microcode size does 

not generally explode with increased ILP.    

 

Performance / cost analysis for our JPEG application indicates that starting from the 

configuration of Imagine, it is first beneficial to exploit DLP by adding to the number of 

clusters.  After the total number of clusters reaches 32, it is more efficient to divide them 

among several thread execution units – each having 8 clusters.  For the JPEG application, 

changing the interna l configuration of a cluster (targeting ILP) is not beneficial. 

 

We concluded that the current Imagine processor should be the configuration of choice 

for single-threaded execution.  In order to make recommendations about multithreaded 

execution, we tried to identify common types of kernels and the hardware best suited to 

each.  Our results are speculative but suggest that a multithreaded stream processor 

should include a stripped-down, low-ILP execution unit in addition to a more powerful 

execution unit like the current Imagine processor. 

 

Finally, we recognize that our results are preliminary and are weakened by our inability 

to directly test DLP and TLP and by some assumptions made in our models.  We suggest 

future work to eliminate these sources of uncertainty.
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1. Introduction 
Our goals as stated in our proposal were to find the costs and bottlenecks of extreme DLP, ILP, 

and TLP and to recommend an optimal balance among the three in terms of cycle count and area.  

During the course of the project, we set the additional goal of classifying common types of 

kernels as a step to recommending non-uniform execution units for thread-level parallelism. 

 

We developed the following tools to further these goals: 

• A cost model normalized to the area of the original Imagine processor 

• A JPEG-like encoding application 

• Five different machine configuration files to test ILP  

• A method for extrapolating ILP results to DLP and TLP 

 

We present conclusions about: 

• The performance and performance-area relationship of different levels of ILP 

• The relationship between increased ILP and microcode size 

• The best way to exploit DLP and TLP 

• Tentative classifications of kernels and suggestions for thread execution units 

 

Section 2 describes the sample applications we used for testing, and Section 3 describes our cost 

model.  Section 4 explains our ILP tests and results, and Section 5 shows how we extrapolated 

these results to DLP and TLP.  Section 6 presents our findings on classifying kernels, and 

Sections 7 and 8 conclude and recommend future research. 

 

2. Sample Applications  
We used several sample applications in order to evaluate performance of various machine 

configurations.    Our analysis focused primarily on versions of a JPEG-like encoder, which we 

wrote.  Additionally, we did limited analysis on the MPEG application provided with the Imagine 

tools as well as our implementation of a wavelet transform. 

 

2.1 JPEG-like encoder 

We chose to implement a JPEG-like encoder in StreamC and KernelC as a typical media 

application.  It is part of the MediaBench [1] benchmark suite, and is a widely used image format 
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standard.  Our implementation is a modification of the baseline sequential codec, illustrated in the 

following figure [2]. 

 

 

Figure 1:  DCT-Based Decoder Processing Steps  

For the sake of simplicity, we did not implement an entropy encoder, such as Huffman coding.  

Rather, we performed simple one-dimensional run-length encoding of the quantized coefficients.  

For source image data, we used a sample 8x8 portion extracted from a real image [2].  We also 

created larger images by repeating this 8x8 sample. 

 

The following table presents our KernelC kernels and their variations. 

 

Kernel Description Variations/notes 
load_cos Loads a stream of 128 cosine 

values into a persistent array used 
by some versions of dct. 

Not used in Taylor series implementation 
of dct. 

gen_idx_str Given microcode variables 
indicating which 8x8 segment of 
the image is being processed, 
generates an index stream of 
length 64. 

Implementation changes slightly as the 
number of clusters are varied.  This is not 
taken into account with the performance 
model described later. 

dct Computes one DCT coefficient 
given the coordinates of that 
coefficient, and a stream of 64 
pixel values of the current 8x8 
segment. 

Either uses a lookup table to compute 
cosine values, or uses a Taylor series 
approximation. 



EE 482C Final Report  
June 6, 2002 

4 

quantize Divides elements of the first input 
stream by elements of the second 
stream, and rounds the result to 
the nearest integer. 

This kernel actually performs a divide 
operation.  If the second input stream’s 
data were reformatted as its reciprocal, this 
operation could be replaced with a 
multiply. 

rle1 Identifies the locations of “runs” 
in the image and uses conditional 
output streams to produce their 
values and locations. 

In the sample image segment, there are 9 
runs. 

rle2 Transforms the stream of run 
length values and locations into a 
stream of run length values and 
lengths. 

 

Table 1: JPEG kernels  

 

The equation for a discrete cosine transform (DCT) is: 

 

When cosine is computed with a Taylor series approximation, the following formula is used: 
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2.2 MPEG encoder and wavelet 
We also examined kernel schedules from our fast wavelet transform application done as a 

homework assignment for this class, and for the MPEG sample application provided in the 

Imagine toolset.  We did not simulate these programs in isim. 

 

3. Cost Model 
In order to compare different parallel configurations, we developed an area-based cost model.   

We derived a formula for cost that is based on the number of functional units in each cluster; the 
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Imagine-like processor.  This model does not include the area of SRF, memory system, and 

external interfaces.  We chose to express cost roughly in terms of mm2 and then scale the result so 

that the cost of Imagine is 100. Each part of the cost model is described in Table 2. 

 
Variable  Value Description 
N  Number of <subscript>  (i.e., NC = number of clusters) 
A  Area of <subscript>  (i.e., AC = area of a cluster) 
Subscripts  T = Threads C= Clusters SP=Scratchpad   
For N & A  A = Adder M = Multiply D = Div/Sqrt   
  ALU= A, M,&D CU=CommUnit U=uController UM=ucMemory  
NF    Number of functional units / cluster = NA + NM + ND + NSP + NCU 
AUC 0.5 Average area of microcontroller decode logic / ALU in cluster 
pe ¼   Number of external ports per functional unit 
b 32 Data width of the architecture 
w 1.8 Wire pitch (typically 0.64 –2µm/wire in a 0.18µm process) 
OF 0.75 Overlap factor. % of functional unit area that switch can overlap 

Table 2:  Variables used in the cost model 

 

3.1 Estimating cluster switch sizes 

Each cluster has a switch that allows each functional unit 

to send data out of the cluster or store data into the local 

register files for other functional units.  The area of this 

switch grows quadratically with the number of functional 

units inside the cluster.  On the right is a diagram taken 

from Register Organization for Media Processing [3], 

which details a way to model a 2D version of such a 

switch.  The basic formula for the switch size is: 

 
SwitchSize = (pe N + 2N)( pe N + N) * w2 * b2 
 

To estimate the size of this switch, we used a wire pitch of 2 µm to allow enough room for power, 

ground, and noise shielding wires.  Using these values and converting to mm2, the formula 

becomes: 

 
 SwitchSize = 2.81* N2 * 22 * 322/ 106 = 0.012 N2  ≈  N2 /100 
 
Taking this result and solving for wire pitch, we get 1.86 µm, which is still reasonable.  We used 

the same formula for both the internal cluster switch (NF
2 /100) and the intercluster 

communication switch (NC
2 /100). 
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3.2 Cluster Area  

To estimate the area of the functional units we again used Imagine as a reference, where the 

cluster contains 3 adders, 2 multipliers, 1 divider, 1 scratchpad, and 1 communication unit, for a 

total size of 7 mm2.  In our model, we scaled the number of scratchpads and communication units 

by adding one for every 5 ALUs.  We estimated an area of 1 mm2 for each multiplier or divider 

and 0.5 mm2 for adders, scratchpads, and communication units, which makes: 

AF = 0.5 NA + NM + ND + 0.5 NSP + 0.5 NCU  
NSP = NCU = max( 1, int(NALU/5) ) 
AC = ClusterArea = max(AF, OF * SwitchSize) + (1- OF) * SwitchSize 
AC = max(AF, OF * NF

2 /100) + (1- OF) * NF
2 /100 

 
3.3 Microcontroller 

The microcontroller size is constant as DLP increases, since every cluster receives the same 

instruction.  For TLP, each thread requires an additional microcontroller. The more interesting 

aspect of our cost model was how we chose to scale the microcontroller size as ILP increases.  As 

described in Section 4.3, we observed that the total microcode size in terms of bits did not grow 

dramatically as we added functional units to each cluster.  Therefore, the memory storage part of 

the microcontroller can remain constant, but the control logic and instruction decoders will have 

to grow as we scale ILP:    

AU = AUM  + AUC * NF 

 

3.4 Complete formula for cost model 

Cost = NT (NCAC + NC
2 /100 + AU) 

Cost = NT (NC [max(AF, OF * NF
2 /100) + (1- OF) * NF

2 /100] + NC
2 /100 + 12  + 0.5 NF) 

 
The main limitation of this cost model is that is does not 

consider the entire chip area, which was beyond the scope 

of this project.  It is an effective model to use when 

comparing various implementations that are similar in size, 

but not as useful when comparing configurations whose 

areas vary by more than 2x.  From the layout of Imagine 

shown at the right, one can see that the area considered in 

our cost model in the cluster and microcontroller regions is 

about 40% of the chip.  Therefore a cost of 200 may only 

increase the total chip area by 40%.  A better model of the 

entire chip area would add a scaling model for the SRF and other components. 
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Figure 2: Plot of cost model function 

 
4. Measuring Instruction-level Parallelism 
To simulate varying degrees of instruction-level parallelism, we created five representative 

machine configurations (.md files) and examined results for three different applications.  We 

studied the JPEG application the most closely, but we also looked at kernel schedules for the 

provided MPEG application and for our fast wavelet transform in order to check our intuitions. 

 

4.1 Cluster configurations 

The cluster configurations we tried are summarized below.  Wimp exhibits extremely low ILP; 

Stud is extremely bloated.  All of the machine configurations we tried have eight clusters.  

Unfortunately, we were not able to actually scale the number of scratchpads and communication 

units in our .md files as detailed in our cost model and as reflected in the area numbers.  Our 

results should not be weakened by this limitation, however, since the kernels we analyzed most 

heavily were almost free of scratchpad and communication operations. 

 
Name #ADD #MUL #DIV Norm. Area Instr. Width (bits) 

Wimp8 1 1 1 70 375 
Tin8 3 1 2 100 478 

Gold8 3 2 1 100 497 
Straw8 6 4 2 181 705 
Stud8 12 8 4 352 1129 

Table 3: Five cluster configurations  
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4.2 Efficiency of the JPEG application 

The performance per unit area (efficiency) is shown in Table 4 for both the kernel cycles and for 

the overall JPEG application.  The numbers for the overall application reflect a high proportion of 

StreamC overhead, which is exaggerated because we used a small input, meaning less time spent 

in the kernels, and because we were unable to optimize our StreamC code.  We suspect that the 

kernel performance numbers are therefore more representative. 

 
Name Kernel efficiency Overall efficiency 
Wimp8 1.14 0.82 

Tin8 0.86 0.54 
Gold8 1.00 1 
Straw8 0.72 0.97 
Stud8 0.38 0.81 

Table 4: ILP data for the JPEG application, normalized to Imagine 

 
Our data show that, at eight clusters, Gold8 and Straw8 yield approximately equivalent 

performance per unit area.  Stud8, however, suffers because of “wimpy” kernels that are 

bottlenecked by short-stream effects and light computation. 

 

4.3 ILP and microcode size 

For kernels that are well matched to their execution hardware, increasing ILP does not necessarily 

increase microcode size; in fact, unrolled code on a larger execution unit is often smaller and 

faster than code that is merely pipelined on a smaller unit.  We only observed code size bloat in 

two cases.  The first is when hardware is grossly underutilized, meaning that a large proportion of 

the instruction width is unused.  The second is when code is unrolled extensively for tiny 

performance gains on a large execution unit.  The chart below shows this principle for the dct 

kernel, which is representative of the computationally heavy kernels we observed.  The chart 

shows that code size on Stud8 does bloat when it is unrolled to achieve a small performance gain, 

but that no tradeoff between ILP (and thus increased performance) and code size exists in general. 

 
Name Directives Main loop cycles Code size (B) 
Wimp8 pipeline(1) 55 6937 

Tin8 pipeline(1) 55 8724 
Gold8 pipeline(1) unroll(2) 30 5964 
Straw8 pipeline(1) unroll(2) 15 4583 

Stud8 pipeline(1) unroll(2) 7.5 7339 

Stud8 pipeline(1) unroll(4) 7.25 9314 

Table 5: ILP and code size.  The directives given for each kernel are the ones that yielded optimum 
absolute performance. 
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5. Extrapolating Data-level and Thread-level Parallelism 
Because the tools prevented us from changing the number of clusters, we developed a method to 

extract DLP and TLP performance data using the kernel schedules for the various cluster 

configurations.  This approach neglects all execution time due to non-kernel events, such as 

loading microcode, and perhaps more significantly , memory operations. 

 

From the microcode (.uc) file for a scheduled kernel, we can directly determine the number of 

instructions in each basic block.  Furthermore, we know which of these blocks correspond to the 

kernel’s loop body and which are outside the loop.  For kernels with one loop, we model its 

execution time as: 

 
( )[ ] okeNumKernInvlesNonLoopCycrNumLoopIteLoopCyclesNumCycles ⋅+⋅=  

 
LoopCycles and NonLoopCycles are extracted from the .uc file.  NumKernInvoke is a property of 

the StreamC code calling the kernels.  NumLoopIter depends on numTimes (determined from 

either the amount of data sent to the kernel, or a constant, or dependent on the specific data sent 

to the kernel), numClusts (the number of clusters), and unrollAmt (the extent to which the loop is 

unrolled), as expressed in the following formula. 









⋅
=

unrollAmtnumClusts
numTimes

MAXrNumLoopIte ,1  

 
Knowing the length of a single kernel invocation and understanding the StreamC dependencies 

between kernel invocations, it is possible to develop schedules for the kernels distributed among 

thread execution units (TEUs).  Performance data can then be extrapolated from the ILP data.   

 

For the case of the JPEG application, the execution time of DCT is about 98% of the total 

execution time.  Therefore pipelining the different stages of the process would not be beneficial.  

So for increased TLP, different TEUs would process different 8x8 segments of the image. 

 

The following figures shows how efficiency of the JPEG applications changes as support for DLP 

varies.  The results are normalized to the efficiency of one Gold8 TEU running the particular 

application. 
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The first result is for the JPEG-Taylor implementation.  It is interesting to note that for this 

application, Gold8 (Imagine) is the most efficient.  Also, going from 8 to 16 clusters gives nearly 

identical efficiency.  This leads us to the tentative conclusion that given more area, using it to 

exploit DLP would be most cost-effective first step.  These results also show that for the 

configurations targeting increased ILP (Straw and Stud), efficiency drops rapidly after DLP is 

increased past a certain point.  Tin shows very low efficiency for this application because we 

replaced divide instructions by multiplies whenever possible.  As expected, with kernels that have 

no division instructions, replacing a multiply unit with a divide unit is not at all beneficial. 
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Figure 3:  JPEG (Taylor) DLP Efficiency vs. Num. Clusters 

 
The following figure shows the performance of JPEG-D, that is the version of JPEG that is 

divide-limited, or Dumb, since divisions by a constant were not transformed into multiplications. 

 

JPEG-D DLP: Efficiency (Normalized to gold8)
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Figure 4: JPEG (Lookup, Divide) DLP Efficiency vs. Num. Clusters 
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It can be seen that in this case, the Tin configuration is the most efficient, since it has traded a 

multiply unit for an additional divide unit.  Comparing this figure to the previous one 

demonstrates the fact that the specific implementation of a kernel can drastically affect 

performance.  Certain types, or implementations, of kernels are significantly more efficient on 

certain cluster configurations. 

 

In the following graph showing the efficiency for JPEG-S, the smart lookup-table version that has 

divides converted into multiplies, we see that the Tin configuration does not fare as well in the 

dumb implementation.  This does show the advantage of the Tin configuration on a kernel that is 

divide-limited. 

JPEG-S DLP: Efficiency (Normalized to gold8)
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Figure 5:  JPEG (Lookup, Smart Mult) DLP Efficiency vs. Num. Clusters 

 
The next two figures show how the efficiency of JPEG (Taylor) changes as a constant number of 

identical clusters are redistributed among varying numbers of TEUs. 

JPEG-T TLP: Efficiency for Gold (normalized to 1 Gold8)
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Figure 6: JPEG (Taylor) TLP Efficiency vs. Num. TEUs  of Gold 
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Because there are no dependencies among the different TEUs, we assume ideal speedup in terms 

of raw performance.  This is why one Gold8 has the same efficiency as two Gold8s, which is the 

same for four Gold8s.  32 or more total clusters should be arranged into multiple TEUs, while it is 

not beneficial to do so with configurations having fewer numbers of total clusters. 

JPEG-T TLP: Efficiency for 32 Total Clusters 
(Normalized to 1 Gold8)
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Figure 7: Efficiency for 32 Total Clusters vs. Num. Threads  
8 or 16 total clusters yields the same graph, shifted to the left. 

 
The TLP results in actuality are a restatement of the DLP results for this application, namely that 

using Gold8 or Gold16 configurations gives the highest efficiency.  Having multiple TEUs of 

those configurations is more efficient than constructing single TEUs with additional clusters. 

 

6. Classifying Kernels  
We made a preliminary effort to identify common types of kernels and the execution hardware 

best tailored to each.  Our wavelet and JPEG code contained two major types of kernels, 

described below.  However, the kernels in the provided Imagine sample applications were more 

intense than ours and exhibited different characteristics; therefore, we recommend that further 

attempts to classify kernels examine the work of many different programmers. 

 

6.1 Wimpy kernels 

Wimpy kernels are kernels that run approximately equally well on all five hardware 

configurations.  These kernels tend to be computationally light and hard to optimize because of 

intercluster communication and short stream effects that prevent unrolling.  In our JPEG program, 
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gen_idx_str and the run length encoding kernels were wimpy, as were all of our wavelet kernels 

except FIR.  Wimp8 yields the best efficiency for these kernels. 

 

6.2 Functional unit-limited kernels 

The rest of our kernels were limited by a single functional unit; doubling or quadrupling the 

number of that functional unit doubled or quadrupled the performance of that kernel.  These 

kernels were most efficient on Straw8 and Stud8, since double or quadruple speedup over Gold8 

could be achieved without as large an increase in area. 

 

7. Conclusions 
Below are our conclusions with respect to the goals stated in our proposal. 

 

7.1 Consequences of pushing parallelism 

ILP: The effects of adding additional functional units in each cluster were very kernel-specific, 

helping kernels that were FU-limited, but leaving wasted resources for wimpy kernels.  The cost 

of the additional microcontroller and the internal cluster switch make configurations with greater 

than 10-12 ALUs per cluster show diminishing returns. 

 

DLP: To maintain a constant number of ALUs when we pushed in the DLP direction, we had to 

use wimpy clusters with few ALUs.  The main overhead then became the cost of the scratchpad 

and communication unit in every cluster amortized over fewer ALUs. 

 

TLP: The additional microcontroller for every thread is the major cost when pushing TLP.  The 

big win could come from a small TEU that performs as well as a larger one for some kernels at a 

fraction of the cost.  Wimp8 is therefore optimal for the many wimpy kernels. 

 

7.2 Preliminary recommendations on aspect ratio  

For a single-threaded implementation, the aspect ratio of Imagine achieves a high efficiency on 

the applications we tested.  As a rule of thumb, the best aspect ratios will be those that allow as 

many ALUs on the chip as possible at minimum cost. Because of the NF
2  and NC

2 terms in the 

cost model there is a first-order minimum cost point with this aspect ratio: 

prALUsOnChiTotalNumbeNN CALU ==  
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For a chip with 48 ALUs like Imagine, this would be a value of about 7.  Because the 

microcontroller area grows with Nf, it is better to have NALU < NC so setting NALU  = 6 and NC  = 

8 is a very minimal cost implementation for 48 ALUs.  For a very simple performance model that 

assumes every ALU on a chip can be fully utilized, a plot of total ALUs / cost is shown below 

(again, the values have all been scaled so that the value for Imagine is 100). 
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Figure 7: Plot of total ALUs/cost as a simple efficiency metric 

Note that this plot assumes full utilization of every ALU, which is a major simplification of 

reality that will especially break down at high numbers of ALUs/cluster.  Even with this 

limitation, there are some interesting points to note about this plot: 

• The dark blue region is the best place to be from a performance/cost standpoint. 

• With 8 clusters, each subsequent ALU added to a cluster increases the performance by 
about 10% until the ALUs/cluster reaches 8, after which the incremental gain drops. 
Imagine has 6 ALUs/cluster so it may benefit from adding 2 more. 

• 16 clusters with 8 ALUs/cluster would be 30% better than Imagine. 

• The jagged edges are caused by the scratchpad and communication units that are added 
for every 5 ALUs per cluster. 

 
As fabrication processes improve and more area is available , we would recommend: 

1. First push in the DLP direction to 16 or 32 clusters. 

2. Push ILP slightly by adding another DIV unit.  Fully pipelining the single DIV unit 
would also be beneficial. 

3. Push TLP, since results suggest that multithreading when you hit 32 clusters is beneficial. 
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4. Explore non-uniform TEUs.  Wider ILP TEUs for computationally intensive kernels, 
smaller custom clusters for wimpy kernels, etc.  

 

8. Recommendations and Future Work 
This section contains our recommendations for the developers of the Imagine toolset and for 

researchers who wish to extend our work. 

 

8.1 Improving the Imagine toolset 

We have two suggestions for improving the Imagine toolset.  The first is to automatically 

generate .md files with a script that prompts the user to enter the number and kinds of functional 

units per cluster and the number of clusters.  This task should be straightforward and would 

alleviate the tedium and difficulty of manually making the many changes to .md files.  

 

Our second suggestion is to have the Imagine compiler change divide operations in kernels to 

multiply operations whenever possible, since the divide unit is not fully pipelined and therefore is 

less efficient.  Perhaps the compiler could detect exceptions to this rule as well, like kernels that 

fully utilize the multiplication units already. 

 

8.2 Exploring thread-level parallelism and kernel classification  

Additional work can be done to further classify types of kernels from more applications and 

coding styles.  Once a set of targeted kernels is understood, explore non-uniform TEUs that will 

perform well on these kernels with minimal hardware.  We also recommend that future 

researchers continue use of the “wimp” and “stud” nomenclature, which we are very proud of. 

 

8.3 Scalability 

Further research could take scalability into account more fully than we did.  Future researchers 

may want to develop a cost model that scales the SRF and other areas of the chip that we left 

constant, particularly as they study TLP.  Additionally, our inability to actually add scratchpads 

and communication units would seriously hinder our ability to test a wider range of applications. 
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