
Final Project Proposal: The Viterbi Algorithm as a Stream Application
John Davis, Andrew Lin, Njuguna Njoroge, Ayodele Thomas
EE482C Advanced Computer Organization: Stream Processor Architectures
Stanford University, Spring 2002

The Viterbi Algorithm

Background

Convolutional coding is a popular error-correcting coding method used in digital communications. A
message is convoluted, and then transmitted into a noisy channel. This convolution operation encodes
some redundant information into the transmitted signal, thereby improving the data capacity of the channel.
The Viterbi algorithm is a popular method used to decode convolutionally coded messages. The algorithm
tracks down the most likely state sequences the encoder went through in encoding the message, and uses
this information to determine the original message. Instead of estimating a message based on each
individual sample in the signal, the convolution encoding and Viterbi decoding process packages and
encodes a message as a sequence, providing a level of correlation between each sample in the signal.

The Viterbi Algorithm as a Streaming Process

The Viterbi algorithm fits nicely into the streaming paradigm. For a ½ rate system, a stream of two-bit
digital elements is input into the Viterbi decoder, and a stream of one-bit elements is returned. The
decoding process involves two major steps – metric update and traceback. These two steps can be thought
of as kernels. An illustration of how these two kernels might interconnect with input and output streams is
shown below.

Metric
Update Traceback

Output
Stream

Input
Stream

State Metrics

Transition Buffer

Viterbi Decoder

Noisy Channel Convolutional
Encoder

Message
Coded

Message
Coded Message + Noise

The original message
(hopefully!)

In this particular model, a stream that consists of the coded message and injected noise is input to the
Viterbi decoder. Within the decoder, a Metric Update kernel is performed, which produces two streams – a
state metric stream, which contains the accumulated state metrics for all delay states, and a transition
stream, which contains the optimal path chosen for each delay state. These two streams are passed to a
traceback stream, which traverses the state metric stream and employs the transition stream to find the
optimal path through the Trellis. This illustrates one stream-based model of the Viterbi decode process.

Implementing a Viterbi Decoder in Hardware

A Viterbi decoder can be implemented using a DSP [1] or as an ASIC [2]. Implementing the Viterbi
decoder as an ASIC is more efficient in terms of power and performance. However, an ASIC is, for the

most part, a fixed design, and does not allow for much operational flexibility. A DSP provides a large
amount of operational flexibility, since the Viterbi algorithm is implemented as a program, which is
executed by the DSP. This flexibility is gained at the loss of performance and power efficiency.

We believe that the streaming processor architecture, with its many parallel clusters, and execution units
within clusters, may provide higher power efficiency and performance than a typical DSP, yet more
flexibility than an ASIC. For each delay state, an add-compare-select (ACS) operation is performed to
determine the most probable path through the trellis. An ACS operation must be performed for all possible
delay states. Parallelism between the ACS operations can potentially be exploited here. This parallelism
can be mapped to the multiple clusters on Imagine. Another way to exploit parallelism is to run multiple
decoders in parallel on blocks of data [2]. Perhaps a single cluster can be used as a decoder, therefore
allowing multiple decoders to operate in parallel on a single Imagine chip.

We want to investigate the use of a streaming processor (Imagine) as a Viterbi decoder. We not only wish
to compare the performance of Imagine with that of a DSP, but also identify the performance bottlenecks.
The next sections describe the goals of our project in more detail.

+

+

Compare
and

Select

Branch Metric BM0

Branch Metric BM0

State Metric SM0

State Metric SM1

New State Metric

Add-Compare-Select
This operation is performed for every delay state.
The possible branch metrics are added to the
possible originating state metrics. The compare
and select unit compares the outputs of the two
adders, and selects the one with the smaller
output (and hence the smallest local distance).

Project Objectives:
The Viterbi algorithm appears to be a classic streaming application, and thus, it can be exploited by
Imagine. Below, we have outlined the milestones and results that we hope to achieve from this project.
We have located background information on the Viterbi algorithm, see the references below.

Milestones:

• Algorithm evaluation: Is this a streaming application?
• 16 state Viterbi encoder
• Assembly code for TI c54x DSP
• Partitioning methods: single viterbi across all clusters, single viterbi per cluster, etc.
• StreamC and KernelC implementation for Imagine
• Benchmark assembly code
• Benchmark Imagine code
• Analysis of Imagine schedule and performance results
• Conclusions/suggestions
• Try to generalize feedback implementation for stream processors

If time provides:

• Optimizing code
• Modifying .md file if appropriate
• Brook implementation

Results:

• Ease of programming, assembly vs. higher level language
• Performance comparison
• Exploited parallelism in Viterbi algorithm
• Imagine architecture critique

References

1. Hendrix, H., “Viterbi Decoding Techniques in the TMS320C54x Family,” Texas Instruments,
June 1996.

2. P. Black, T. Meng, “A 140-Mb/s, 32-State, Radix-4 Viterbi Decoder,” Journal of Solid State
Circuits, Vol. 27, No. 12, December 1992.

3. David Forney Jr., "The Viterbi Algorithm", Proceedings of the IEEE, Vol. 61, No. 3, March 1973

	Final Project Proposal: The Viterbi Algorithm as a Stream Application
	The Viterbi Algorithm
	Background
	The Viterbi Algorithm as a Streaming Process
	Implementing a Viterbi Decoder in Hardware
	Project Objectives:
	References

