
Viterbi Algorithms as a Stream Application

Final Project

John Davis, Andrew Lin, Njuguna Njoroge, Ayodele Thomas

EE482C Advanced Computer Organization: Stream Processor Architectures

Stanford University, Spring 2002

Table of Contents

Summary of Project and Findings... 2
What we did... 2

Description of the Viterbi Algorithm.. 2
Viterbi Decoding on the Imagine Architecture... 3

The Viterbi Algorithm as a Streaming Application.. 3
Exploiting Parallelism... 4
StreamC/KernelC Implementation.. 6
Integer vs. Bit Manipulation ... 7
Performance Results ... 8
Optimizations .. 9

Viterbi Decoding on the Texas Instruments ‘C54x DSP.. 9
Architectural Features... 9
Viterbi Decoding on the ‘C54x... 10
Performance Results ... 12

What we learned.. 12
Generalized Viterbi in Streams ... 12
Programming in StreamC/KernelC ... 13
Feedback/feedforward Algorithms for Streams Architectures ... 14

Conclusions .. 15
References.. 16

 2

Summary of Project and Findings

The Viterbi algorithm (VA) is a popular method used to decode convolutionally coded messages.

The algorithm tracks down the most likely state sequences the encoder went through in encoding the

message, and uses this information to determine the original message. Instead of estimating a message

based on each individual sample in the signal, the convolution encoding and Viterbi decoding process

packages and encodes a message as a sequence, providing a level of correlation between each sample in

the signal [1,2].

Viterbi decoders are usually implemented using a DSP or with specialized hardware [3]. Because

of the streaming nature of the encoding input, the Viterbi can also be implemented in a stream

architecture like Imagine. We compare a DSP implementation of the Viterbi algorithm to an

implementation of the Viterbi on the Imagine architecture. We also consider the benefits and limitations

of using the Imagine architecture for generalized feedback/feedforward algorithms.

Because Viterbi implementations on DSP can take advantage of specialized hardware, they are

able to extract a lot of parallelism. There is an abundant amount of performance that can be extracted

from a streams implementation, but limitations of the Imagine architecture and compila tion environment

prevent it from reaching the full potential. We suggest several additions to the Imagine architecture

motivated by the DSP implementations that would improve performance.

What we did

Description of the Viterbi Algorithm

The Viterbi algorithm is comprised of two routines - a metric update and a traceback. The metric

update accumulates probabilities for all states based on the current input symbol using the state transitions

represented by a trellis diagram (Figure 1). The traceback routine reconstructs the original data once a

path through the trellis is identified.

The Viterbi that we implement is a 16-state, constraint length 5, ½ rate, radix-2 convolutional

decoder. The rate is the ratio of input bits to output bits. Two bits are transmitted for each input bit for a

coding rate of ½. In Figure 4, X(n) is the uncoded input and G0(n), G1(n) are the encoded outputs. Radix-

2 means that there are only two possible next states for each current state. The current state is identified

by the last 4 inputs to the encoder. Figure 2 shows the state transition trellis for this encoder. The state

transition trellis can be reordered and visualized as a series of butterfly trellis’ that indicate the state

transitions and possible outputs (Figure 2).

There are generally two approaches to the Viterbi algorithm. The sliding window is the first

approach. With this approach, the dependency chain is as long as the data stream and there is only a

 3

single statewide compare during the traceback. A second approach uses frames. With frames, the

dependency chain is reduced to the length of the frame. In order to break the dependency chain, the input

stream can be padded with zeros. That would allow the decoder to assume that the start state is 0000

when starting the metric update, and that the end state of the frame is 0000 when starting the traceback.

This eliminates the need for the 16 traceback compares.

 Figure 1: 16-state, radix-2

 State Tra nsition Trellis

Viterbi Decoding on the Imagine Architecture

The Viterbi Algorithm as a Streaming Application

The Viterbi algorithm fits nicely into the streaming paradigm, although there are issues with its

implementation on the Imagine architecture. For a ½ rate system, a stream of 3-bit integer pairs, where

each integer in the pair can take on the values [-4,-3,-2,-1,0,1,2,3], is the input to the decoder. The output

is a stream of single integers that can also be stored as packed bits. The decoding process involves two

major steps, a metric update and a traceback, which can be thought of as kernels. An illustration of how

these two kernels might interconnect with input and output streams is shown in Figure 4.

In this particular model, a stream that consists of the coded message and injected noise is input to

the Viterbi decoder. Within the decoder, a metric update kernel is performed, which produces two

streams – a state metric stream, which contains the accumulated state metrics for all delay states, and a

0010

0011

0001

1001

x(n-1),x(n-2),x(n-3),x(n-4) x(n),x(n-1),x(n-2),x(n-3)

1,1

1,1

0,0 0,0

G0,G1

0000

0001

0000

1000

x(n-1),x(n-2),x(n-3),x(n-4) x(n),x(n-1),x(n-2),x(n-3)

0,0

0,0

1,1 1,1

G0,G1

Figure 3: System equations for 16-state rate ½
convolutional Encoder

Figure 2: Reordered Butterfly Trellis’
For paths originating from states
0000, 0001, 0010, and 0011.

G0(n) = x(n) + x(n-1) + x(n-3) + x(n-4)
G1(n) = x(n) + x(n-2) + x(n-3) + x(n-4)

 4

transition stream, which contains the optimal path chosen for each delay state. These two streams are

passed to a traceback kernel, which traverses the state metric stream and employs the transition stream to

find the optimal path through the trellis.

Metric
Update

Traceback

Output
Stream

Input
Stream

State Metrics

Transition Buffer

Viterbi Decoder

Noisy Channel Convolutional
Encoder

Message

Coded
Message

Coded Message + Noise

The original message
(hopefully!)

Figure 4: Streaming implementation of Viterbi algorithm

Exploiting Parallelism

An ILP approach to partitioning the Viterbi algorithm for Imagine sends elements from a single

stream to all eight clusters (Figure 5). Although there is a lot of computation that has the potential to be

exploited by the streams architecture, this algorithm is actually communication bound. The problem

stems from the fact that each sample is correlated with adjacent samples. The calculation of possible

branch metrics is completely independent from one data element to the next. However, the algorithm is

serialized by the mechanism that determines the possible state metrics for a particular record of the input

stream. Whether implemented using the sliding window or frame approach, intercluster communication

is required.

In order for the state metrics for time T to be computed, the state metrics from the previous time

period must first be communicated since the new state metrics are found from the sum of the old state

metrics and the new local distance from the encoded input stream. In addition to the time waiting for the

new state metrics to be computed, additional stall time is incurred by the actual communication of the

metrics, which because of architectural limitations, must be done serially (Figure 5). Because this is a 16-

state decoder, 16 values would have to be communicated between clusters for each input record,

increasing the delay and minimizing the benefit of using a streams architecture. Communication and stall

time have a detrimental effect on the performance that is achieved by the Viterbi in an ILP

implementation. Therefore, it does not make sense to implement the algorithm using ILP for Imagine.

Although instruction level parallelism cannot be successfully exploited for either Viterbi

approach (frame and sliding window), data level parallelism can be exploited for the frame approach.

Although there is still a single input stream, for a DLP implementation each cluster would receive a

different frame (Figure 6). Begin and end states are known for each frame and therefore frames can be

 5

decoded in parallel without intercluster dependencies or communication. The zero padding needed to

create independent frames does lead to some reduced throughput and additional overhead. However,

since the amount of padding required depends only on the constraint length (5), the cost will be amortized

over the length of the frame without a noticeable impact on the SRF or throughput.

A third implementation of the Viterbi decoder uses a SIMD architecture to exploit thread level

parallelism. In this implementation, each cluster receives a separate data stream and acts as a full Viterbi

decoder (Figure 7). Because clusters receive separate data streams, the streams are completely

independent and there is no communication between clusters, much like the DLP implementation.

However, unlike the DLP implementation, there does not have to be additional overhead or reduced

throughput since this approach can be used for either frames or sliding window. TLP will not be useful

for applications that require only a single Viterbi decoder. Our implementation can represent the

exploitation of either DLP or TLP.

G0

G1

G7

... ...

Calculate Branch Metric

Select State Branch Directions

Calculate Update State Metric

G8

G9

G15

...

G0

G128

G895

... ...

Calculate Branch Metric

Select State Branch Directions

Calculate Update State Metric

G1

G129

G896 ...

...

...

Figure 5: Viterbi exploiting ILP on Imagine Figure 6: Viterbi exploiting DLP on Imagine

G0

... ...

Calculate Branch Metric

Select State Branch Directions

Calculate Update State Metric

G1

...

...

...

H0 H1

N0 N1

Figure 7: Viterbi exploiting TLP on Imagine

 6

StreamC/KernelC Implementation

Input
Soft

Decision
Data

Output
Decoded

Bit
Stream

State
Metric
Update

Path
Trace-
back

Reverse
Stream
Order

Reverse
Stream
Order

Figure 8: Imagine Kernels

The Imagine implementation of the Viterbi algorithm consists of three kernelC modules and a

streamC module that invokes the three kernels. The implementation reads in an integer file of soft

decision pairs into a stream of encodedG records. encodedG records have two integer fields, named g0

and g1. This stream is passed into the state metric update kernel, which we named statemetric in kernelC.

This module performs several key functions: It first creates the state trellis structure. This

structure utilizes 32 trellisStruct type variables. trellisStruct records contain three fields, the direction

(whether it is upper or lower), the next state and the g0 and g1 collapsed into one variable. After the

trellis is formed, the kernel loops through each element of the input stream. For each element, the

statemetric kernel computes the branch metric, the new state metric and chooses the best state metric for

each of the 16 states for that time sample. The path direction is stored for each of the 16 states based on

the best state metric for that state. This information is stored in a statesRecord record variable that is

outputted in each iteration of the input stream loop. After the kernel has iterated through the whole

stream, it also outputs the state metric values of the last time sample.

The outputs of the state metric kernel need to be reversed since the Viterbi algorithm commences

the path trace back at the end of the stream. We reverse the stream by passing an index stream into a

stream derivation function in streamC. We generate the reverse index stream in kernelC. Since the

stream derivation function accesses the stream as 32-bit words, we had to tailor our reverse index stream

so that it reversed the records, not the words. After the stream reversal, the state transition and the final

state metric are passed into the path traceback kernel. This kernel performs a 16-way compare to

determine which state is the best. From there, it traverses the transition stream, following the direction

(upper or lower) indicated by the stateRecord entry. After each iteration, the kernel outputs the

appropriate bit, which is encoded as either an integer 0 or an integer 1 in our implementation.

Finally, this stream is reversed (using the reverse index stream kernel) and is saved to a file. Note

that we were simulating the situation that each cluster is a Viterbi decoder, so we replicated our input data

8 times for each cluster.

 7

Integer vs. Bit Manipulation

The encoded input stream can be represented in one of two ways – as a stream of integers or as a

stream of packed bits. For our initial Imagine implementation, we choose to use a stream of integers.

This choice was made for ease of programming. However, we recognize that this choice has a negative

impact on storage space. If the elements of the stream were represented as bits (a pair of two 3-bit

integers), the soft decision value requires only 3/32 of the SRF space that is required with integers. In

reality, this is best encoded using a 4-bit nibble. Thus, the reason reduction in SRF space is 1/8 of the

current implementation. Since the streams that are decoded with the Viterbi are quite long, that space

savings could be important in a sliding window implementation. It is not clear that using an integer

representation will have a negative impact on performance since bit manipulation in Imagine would

require repeated masking and shifting to extract bits and the use of temporary variables to perform the

metric update and traceback.

Bit manipulation would have to take place during the state metric update and during the

traceback. The intermediate data created by the state metric update could be stored in one of two ways.

In the first approach, each word would represent the state transition information for a single state over 32

time periods (Figure 9). Therefore sixteen words would be streamed in and saved to a local array before

traceback could begin (since there are 16 states). For each time period, a single bit would be shifted out of

each array index. A compare would take place and the selected path could be indexed directly by the

array. Because of the number of words that must be stored locally, this implementation could be

scratchpad limited.

The second implementation has more complex bit manipulations, but would result in less

scratchpad pressure. In this approach, data for all 16 states during a particular time period would be

packed into a half word (Figure 10). In order to access the information, the word would be masked and

shifted to extract the upper or lower bits. Then, once the appropriate state is determined, more shifting

and masking would have to take place to extract the correct bit. Because of the additional shifting and

masking steps, this implementation would be less efficient and may not afford any more performance that

the previous scratchpad limited version.

 8

0 31 32 63 n-31 n

Time (T)

s0

s15

States

1 word = 32b

...

... ...s0 s0s15 s15

T0 T1

1 word = 32b

s0 s0s15 s15

Tn-1 Tn

... ...
...

 Figure 9: Packed by state Figure 10: Packed by time

Performance Results

Table 2 provides the isim cycle accurate simulation results. The results are classified in terms of

time spent in various section of the StreamC/KernelC code. There is significant StreamC overhead

associated with loading the microcode and doing stream management. Over half of the StreamC overhead

is associated with the initial program startup, before the first KernelC function is called, the second row of

Table 2. We decided to use a kernel to generate the reverse index streams. This added 655 cycles for the

two kernel calls. Finally, traceback was relatively short, taking about 22 cycles per output bit for each

cluster.

Total StreamC Overhead 50533 cycles

Initialization 26562 cycles

Metric Update Loop 6255 cycles

Traceback Loop 2805 cycles

Reverse Index Gen. 1310 cycles

Total 87465 cycles

Table 2: Performance results Imagine code for 8 streams, each of 128 data samples.

Given a frame based Viterbi algorithm, the associated overhead due to padding would amount to

about 6% throughput loss for a frame size of 128 and 8 bits of padding. These results do not take into

account stream reconstruction cost for the frame-based algorithm that exploits DLP. These results can

also be used for a streaming implementation that exploits the TLP of 8 data streams. This would require 8

‘C54x DSPs to achieve the same throughput.

 9

Optimizations

There are several optimizations that can be done using the Imagine architecture. Som were more

successful than others. We do not use the segmented addition and subtraction because there would be no

benefit given the limited number of comparators in the cluster. Further, for the smaller reverse index

streams, arrays were allocated and statically initialized to prevent KernelC calls and the associated

overhead. All KernelC loops were pipelined and loop unrolled when possible. However, as shown in

Figure 11, the state metric kernel is computationally dense, but scratchpad limited, making loop

optimizations difficult. Finally, “expand” was used when possible to place as many of the intermediate

variables in local LRFs to reduce scratchpad pressure. However, not all arrays could be expanded due to

dynamic indexing or iscd failures.

Figure 11. Statemetric update kernel schedule without the 30 cycles of scratchpad accesses.
Viterbi Decoding on the Texas Instruments ‘C54x DSP

Architectural Features

 The Texas Instruments TMS320C54x DSP utilizes separate program and data memory spaces,

which allows instructions and data to be fetched in parallel. In addition, the DSP features four internal

busses (one program memory bus, and three data memory busses), eight auxiliary registers, and address

generation logic. This allows the DSP to execute multiple operand operations in parallel, reducing

memory bottlenecks [4]. The ‘C54x also features two 40-bit accumulators and a 40-bit adder. A

 10

multiply-accumulate (MAC) unit is also provided using one of these accumulators in combination with a

17x17-bit multiplier. The ‘C54x also includes a 40-bit ALU, which can operate in dual 16-bit mode –

that is, instead of performing a single 40-bit operation, it can perform two 16-bit operations at that same

time. A 40-bit barrel shifter and compare-select-store unit (CSSU) is also included. The CSSU is a piece

of specialized hardware included specifically for Viterbi decoding. More details about this functional unit

are presented in the next section.

The ‘C54x operates using a simple six stage pipeline, allowing six instructions to be in flight at a

given time. The six stages of the pipeline are: Generate Program Address, Get Opcode, Decode

Instruction, Generate Read Address, Read Operands, Generate Write Address, Execute Instruction, Write

Result. The writeback operation is overlaid with the last two stages of the pipeline.

Viterbi Decoding on the ‘C54x

As mentioned in the previous section, the ‘C54x includes a compare-select-store unit for Viterbi

decoding. This functional unit is used with the ALU to perform fast calculation and selection of the state

metric and trellis path when updating the state metrics [4]. The CSSU unit compares the two 16-bit parts

of a specified accumulator (one of the two 40-bit accumulators, which are called A and B), and shifts a 1

into a 16-bit transition register (TRN) if the 16-bit word stored in the upper 16 bits of the accumulator is

larger than that which is stored in the lower 16 bits. Otherwise, a 0 is shifted into TRN. The larger value

is then stored to a specified location in data memory.

In addition to the CSSU, the metric update utilizes the dual 16-bit ALU mode via the DADST and

DSADT instructions [5]. These instructions perform dual add/subtract operations in parallel using the 40-

bit ALU. This is best illustrated by example. A 4-state trellis, corresponding to butterfly structure that

maps states 0 and 1 to states 0 and 8 in the 16-state ½ rate trellis used in this study, is shown in Figure 11.

It is assumed that the lower half of auxiliary register 5 (AR5[15:0]) holds the address to the word in data

memory that holds the old state metric for state 0. The upper half of AR5 points to the old state metric for

state 1. AR3 points to the new state metric for state 0, and AR4 points to the new state metric for state 8.

The following four lines of assembly code perform the metric update for this trellis [4]:

DADST *AR5, A ; A(39:16) = *AR5(31:16) + T, A(15:0) = *AR5(15:0) - T
DSADT *AR5+%, B ; B(39:16) = *AR5(31:16) - T, B(15:0) = *AR5(15:0) + T
CMPS A, *AR3+% ; *AR3 = max(A(31:16), A(15:0))
CMPS B, *AR4+% ; *AR4 = max(B(31:16), B(15:0))

The first line of code computes the accumulated state metric for the paths from state 0 to state 0

and from state 1 to state 0. The next line of code computes the accumulated state metric for the paths

from state 0 to state 8 and from state 1 to state 8. The third line of code selects the larger of the two paths

that go to state 0, and the last line of code selects the larger of the two paths that go to state 8. The

 11

decision that results from the CMPS instruction is shifted into bit 0 of the 16-bit TRN register. Each

instruction takes 1 cycle to execute.

Old State 0
Metric

Old State 1
Metric

New State 0
Metric

New State 8
Metric

AR5 AR3

AR4

BM(Branch Metric)

BM

-BM

-BM

New State 0 Metric = max(Old State 0 Metric + BM, Old State 1 Metric - BM)

New State 8 Metric = max(Old State 0 Metric - BM, Old State 1 Metric + BM)
Figure 11: The 4 state butterfly trellis mapping states 0 and 1 to states 0 and 8 for the 16 state Viterbi decoder.

The ‘C54x provides a number of features that simplify traceback. There is an instruction to

extract individual bits out of a word (BITT) – that is, a bit in a word can be extracted by addressing its

position in the word [5]. This is best illustrated by example. The result of the CMPS instruction is

shifted into the TRN register, and this register is written to data memory after all state metrics are updated

for a single timestep (or data sample). The transition buffer is thus organized as an array of 16 bit words,

one word per timestep. If the input data stream has 128 data samples, then the transition buffer would be

an array of 128 16-bit words. During traceback, the transition for the current sta te is extracted from the

transition buffer by using the BITT instruction to address the correct bit in a word in the transition buffer

array. After the bit is extracted, it is shifted into the word containing the state. The word containing the

state is then masked so that the lower 4 bits remain. The state word then contains the next state, and this

traceback routine repeats. This is illustrated in Figure 12.

 12

0 8 1 9 2 10 3 11 4 12 5 13 6 14 7 15

...

Each bit in the 16-bit word corresponds to the transition decision for a state.
Here, the MSB of the transition buffer word contains the path decision for state
0, and the LSB contains the path decision for state 15.

MSB LSB

One word is stored for each
time step or data sample

State = 1000 (8)

10 01 11 10 0 00 11 10 0

1 111 1 11 100 0000 0 0

State << 1 = 10001

State = State & 000F = 0001 (1)

State << 1 = 00011

State = State & 000F = 0011 (3) And the process continues...

Figure 12: A bit in the transition buffer is addressed by the state, and the next state is computed by

shifting in the extracted transition bit and masking the result.

Initialization 308 cycles

Metric Update Loop 9604 cycles

Traceback Loop 1344 cycles

Total 11256 cycles

Table 3: Performance results ‘C54x Viterbi assembly code for 128 data samples.

Performance Results

The ‘C54x Viterbi assembly code was tested using a cycle accurate simulator supplied by Texas

Instruments, sim500x. The performance results for 128 data samples are summarized in Table 3.

Thread level parallelism can be exploited by running several ‘C54x Viterbi decoders in parallel.

This would result in a total cycle time that is 7.8 times faster than what is shown in Table 2. Unlike

Imagine, this would not be a single chip solution, and would require several ‘C54x chips and the board

space to mount them. However, if only one ‘C54x DSP was to process the eight streams, the resulting

total cycle time of 90048 cycles, 3 % more cycles than the Imagine process. Similar conclusions can be

extrapolated if we consider the DLP case. In both situations, reconstructing the output stream from the

individual frames was not considered.

What we learned

Generalized Viterbi in Streams

We considered a general Viterbi implementation and the impact of changing the parameters on

the performance.

 13

Changing the rate will have the greatest effect on the stream size. As the rate decreases (or

similarly as the number of output bits increases) the size of the encoded stream will increase linearly.

Changing the rate will also impact the number of stream elements that must be loaded before branch

metric calculations can take place.

Increasing the number of available states affects the size of the intermediate streams and the

amount of computation that must be done in computing them. The number of add-compare-selects that

must be performed in selecting the state metric also increases. Furthermore, a larger number of states

means that the trellis is larger and will take up more space in the scratchpad.

Increasing the radix will make the state transition trellis more complex. A more complex trellis

increases the number of comparators that are needed to evaluate each state transition.

Therefore, performance limitations present in this implementation would be exacerbated if any of

the parameters were increased.

Programming in StreamC/KernelC

Several architectural features limited the performance of the Imagine implementation. There are

thirty-two intermediate values that must persist and be updated for each record of the stream. Because

they overflow the LRF’s and are stored in the scratchpad. Since these values must be loaded for each

record, the loop becomes scratchpad limited. Multiple ports in the scratchpad would help the

performance of this application. Imagine has a difficult time extracting performance for kernels that keep

a large number of persistent intermediate values. Furthermore, LRF pressure is high because “expand”

has limited usage for arrays within the kernels and iscd may not be able to schedule kernels with a large

number of expanded arrays.

Code expansion is also a problem because nested loops are discouraged. Because there are 16

states, most operations must be repeated 16 times and must be programmed as separate lines in the source

code.

More comparators would also be beneficial. Sixteen compares must take place to select the best

path. Because there is only a single comparator per cluster and intercluster communication is expensive

(due to the sequential access), performance is limited.

As mentioned previously, using packed bits would greatly decrease the size of intermediate

streams in the Viterbi algorithm. However, bit manipulation can be costly since masking and shifting

must be done repeatedly and each manipulation takes a cycle. Direct indexing of bits in a word similar to

DSP implementation would allow much easier and better forming bit manipulation.

A programming limitation is the separation of the concept of structures and arrays. In KernelC,

arrays of records and records composed of arrays are forbidden. Therefore, temporary arrays must be

 14

maintained to allow direct indexing by state. Being able to combine structures and arrays would make

programming easier and reduce the number of intermediate variables. Furthermore, the ability to

optimize nested loops would have greatly reduced the code size of the kernels. Finally, we found it

difficult to index into streams of records. The documentation was incomplete, but we believe that it has

improved greatly since we started the project.

Feedback/feedforward Algorithms for Streams Architectures

The Viterbi algorithm is just one example of a feedback or feedforward algorithm.

Feedback/forward algorithms can take many different forms, but there are two basic types – loops that

depend only on previous input values and feedback loops that rely on values generated in previous loops.

Feed loops that depend on previous input data are easier to implement than feed loops that depend on

values calculated during previous loops.

An IIR Filter is an example of the former type of feed loop. The filter contains a feedback loop,

but only input values are fed back in the loop. Because there are no dependencies between input data, and

the filter needs a finite number of previous values, edge data can be replicated so that data can be

distributed across clusters with no communication. While breaking the dependency chain does increase

the amount of data that must be transmitted and reduce throughput, the benefit of removing

communication is more important as long the amount of replication is dominated by the size of the input

stream chunk.

For the Viterbi implementation, we pad the data to allow chunking at the frame level. This is

equivalent to the process of replication for the IIR filter. The main difference is the usefulness of the data

being added. For the IIR, zero padding would pollute the data is should not be implemented. The data

that is replicated is data that we actually care about. For the Viterbi, we pad with zeros, which is

essentially junk data. However, the processes using strip-mining to chunk the data and using additional

data (whether padded or replicated) to break dependency chains is a general technique that can be used

for all feedback/ feedforward algorithms implemented in streams (Figure 13).

 15

IIR - replicated input data for overlap
Viterbi - padding with zeroes

IIR/Viterbi - strip mined input data

Figure 13: Strip-Mining for Feedback/feedforward loops

Conclusions

The Viterbi algorithm (VA) is an example of a streaming algorithm that can be

implemented on Imagine. The structure of the VA prevents us from exploiting all levels of

parallelism, in particular ILP. From the results, it is clear that the time Imagine spends in the

statemetric kernel provides slightly better than ideal speedup, based on an individual ALU

cluster and DSP comparison, Imagine is 53% faster based on cycle count. The traceback does

not perform as well due to the computational sparse nature of the kernel.

There are some clear improvements that can be made to the Imagine architecture that

would improve its programmability and performance. The software features that the VA would

have benefited most from involved bit manipulation, and memory management. Circular buffers

and the ability to reverse index the SRF would have removed two kernels. Furthermore, more

comparators or segmented comparators would have enabled the use of the segmented adders.

Finally, bit indexing into a word would have made the traceback kernel more efficient.

There are many aspects of future work that can be explored based on this research. The

majority of the overhead for the Viterbi decoding was spent in StreamC. Thus pipelining

StreamC could reduce the overhead and initialization time. Improving the kernel scheduler

would reduce the scratchpad pressure and use more of the LRF. This would have enabled better

pipelining of the statemetric kernel. In addition, adding the ability to reverse index the SRF

would be useful for this type of application. Overall, stream management and bit manipulation

was the major barrier to this project, so any improvement would be beneficial.

 16

References

1. A. J. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum decoding

algorithm,: IEEE Trans. Information Theory, vol. IT-13, pp.260-269, April 1967

2. David Forney Jr., "The Viterbi Algorithm", Proceedings of the IEEE, Vol. 61, No. 3, March 1973.

3. P. Black, T. Meng, “A 140-Mb/s, 32-State, Radix-4 Viterbi Decoder,” Journal of Solid State Circuits,

Vol. 27, No. 12, December 1992

4. “TMS320C54x DSP CPU and Peripherals: Reference Set, Volume 1,” Texas Instruments, 1997.

5. Hendrix, H., “Viterbi Decoding Techniques in the TMS320C54x Family,” Texas Instruments, June

1996.

 17

Appendix A: Imagine Code

Stream C: viterbi_sc.cpp
#include "idb_streamc.hpp"
#include "viterbi_h.hpp"
#include "indexGen.hpp"
#include "unroll_depth.h"

#define NUM_CLUSTER 8
#define MAX_INDEX_ARR_SIZE 16384

STREAMPROG(my_viterbi);

extern String get_next_word(char** s);
extern int get_next_num(char** s);

static void ReverseStream(StreamSchedulerInterface& scd, im_stream<statesRecord> &in, int stride,
 im_stream<statesRecord> &rev);
static void ReverseStreamInt(StreamSchedulerInterface& scd, im_stream<im_int> &in, int stride,
 im_stream<im_int> &rev);
static void ReverseStream_State(StreamSchedulerInterface& scd, im_stream<statesRecord> &in,
 im_stream<statesRecord> &rev);
static void ReverseStream_Int(StreamSchedulerInterface& scd, im_stream<im_int> &in,
 im_stream<im_int> &rev);
static void MakeReversedIndexStream(StreamSchedulerInterface& scd, int length, int record_size,
 im_stream<im_int> out);

// defining stream program
void my_viterbi(StreamSchedulerInterface& scd, String args) {
 // read parameters (input file name, comparison file name)

 String in_fname;
 String out_fname;
 String comp_fname;
 int in_length;
 int sMetric [] = {112, 96, 80, 64, 48, 32, 16, 0};

 im_uc<im_int> loop_iter;

 //char i_str_buff[6];
 //String i_string;

 if (args.length() > 3) {
 char* a = args.char_ptr();

 in_fname = get_next_word(&a);
 in_length = get_next_num(&a);

 out_fname = get_next_word(&a);
 comp_fname = get_next_word(&a);

 cout<<"Input file:"<<in_fname<<" size: "<<in_length<<endl;
 cout<<"Output file: "<<out_fname<<endl;
 cout<<"Compare file: "<<comp_fname<<endl;
 }
 else {
 cerr << "Usage:<input_data_file> <length> <comparison_name>" << endl;
 return;
 }

 // We assume that the data files is divisable by the fir tap length and cluster.

 cout<< "Reading in streams!"<<endl;

 18

 // Stream Declarations

 im_stream<encodedG> NAMED(in_s) = newStreamData<encodedG>(in_length / 2);

 im_stream<statesRecord> NAMED (transition_s) = newStreamData<statesRecord>(in_length /
2);
 im_stream<statesRecord> NAMED (rev_transition_s) = newStreamData<statesRecord>(in_length
/ 2);

 im_stream<statesRecord> NAMED (final_metric_s) =
newStreamData<statesRecord>(NUM_CLUSTER);
 im_stream<statesRecord> NAMED (rev_final_metric_s) =
newStreamData<statesRecord>(NUM_CLUSTER);

 im_stream<im_int> NAMED(rev_out_combined_s) = newStreamData<im_int>(in_length / 2);
 im_stream<im_int> NAMED(out_combined_s) = newStreamData<im_int>(in_length / 2);
 //im_stream<im_int> NAMED(out_s) = newStreamData<im_int>(in_length / NUM_CLUSTER);

 loop_iter = 16;

 // load the input data from the files
 streamLoadFile(in_fname.char_ptr(), "txt", "", in_s);

 statemetric(in_s, transition_s, final_metric_s);

 ReverseStream(scd, transition_s, 16, rev_transition_s);

 im_stream<im_int> &index_s = newStreamData<im_int>(NUM_CLUSTER);
 streamLoadBin(sMetric, NUM_CLUSTER, index_s);
 rev_final_metric_s = final_metric_s(0, NUM_CLUSTER, im_fixed, im_acc_index, index_s);

 bestpath(rev_transition_s, final_metric_s, rev_out_combined_s, loop_iter);

 ReverseStreamInt(scd, rev_out_combined_s, 1, out_combined_s);

 //streamSaveFile(out_fname.char_ptr(), "txt", "d", out_combined_s);
 //streamCompareFile(comp_fname.char_ptr(), rev_out_combined_s, 0, "a");

}

/* ReverseStream
 * --------------------
 * Reverses the order of the elements in a stateRecord type stream.
 */

static void ReverseStream(StreamSchedulerInterface& scd, im_stream<statesRecord> &in, int stride,
 im_stream<statesRecord> &rev)
{
 int in_length = in.getLength();
 String test_fname;
 im_uc<im_int> start_Index;
 im_uc<im_int> size;
 im_uc<im_int> rec_stride;
 im_stream<im_int> &index_s = newStreamData<im_int>(in_length);

 start_Index = in_length;
 size = ((in_length)/(NUM_CLUSTER*UDEPTH));
 rec_stride = stride;

 index(start_Index, rec_stride, size, index_s);
 test_fname = "Viterbi\\vit_files\\state_index.out";
 streamSaveFile(test_fname.char_ptr(), "txt", "d", index_s);
 //MakeReversedIndexStream(scd, in_length, 16, index_s);
 rev = in(0, in_length, im_fixed, im_acc_index, index_s);

}

/* ReverseStreamInt

 19

 * --------------------
 * Reverses the order of the elements in a stateRecord type stream.
 */

static void ReverseStreamInt(StreamSchedulerInterface& scd, im_stream<im_int> &in, int stride,
 im_stream<im_int> &rev)
{
 int in_length = in.getLength();
 String test_fname;
 im_uc<im_int> start_Index;
 im_uc<im_int> size;
 im_uc<im_int> rec_stride;
 im_stream<im_int> &index_s = newStreamData<im_int>(in_length);

 start_Index = in_length;
 size = ((in_length)/(NUM_CLUSTER*UDEPTH));
 rec_stride = stride;

 index(start_Index, rec_stride, size, index_s);
 test_fname = "Viterbi\\vit_files\\int_index.out";
 streamSaveFile(test_fname.char_ptr(), "txt", "d", index_s);

 //MakeReversedIndexStream(scd, in_length, 16, index_s);
 rev = in(0, in_length, im_fixed, im_acc_index, index_s);

}

Kernel C: statemetric_kc.cpp
#include "idb_kernelc.hpp"
#include "viterbi_h.hpp"
#include "idb_kernelc2.hpp"
#include "unroll_depth.h"

// Path definitions

#define UPPER 0
#define LOWER 1

KERNELDEF(statemetric, "Viterbi/statemetric_kc.uc");

// in - input stream of encoder output values
// out - output stream of state transition values
// out_final_metric - output stream of state metric at final time

kernel statemetric(istream<encodedG> in, ostream<statesRecord> out, ostream<statesRecord>
out_final_metric)
{

 //int i;
 int temp1, temp2;

 encodedG g; // stream input variable
 int g0, g1; // output vars

 //array<trellisStruct> trellis (16) (2); // trellis[#states][radix]
 // radix = 2; #states = 16
 // trellis[x][y].state = next_state;
 // trellis[x][y].dir = direction;

 expand<int> prev_state (16); // State Metric for previous time period
 array<int> curr_state (16); // State Metric for current time period , can't expand no
sched
 array<int> br_m (4); // branch metric table , cannot expand line 286

 int state_transition; // State Transition path
 statesRecord transitions; // State Transition record
 statesRecord final_metric; // Final State Metrics
 int br_m1, br_m2; // branch metric options

 20

 int path1, path2; // path options

 cc comp;

 // Initialize the butterfly Trellis
 //
 // g0g1 = 0 -> g0,g1 = 0,0
 // g0g1 = 1 -> g0,g1 = 0,1
 // g0g1 = 2 -> g0,g1 = 1,0
 // g0g1 = 3 -> g0,g1 = 1,1

 // treliss[state][radix]--state from 0 to 15, path dir 0 or 1
 // radix = 2; #states = 16
 // trellis[x][y].state = next_state;
 // trellis[x][y].dir = direction;

 trellisStruct trellis00, trellis01;
 trellisStruct trellis10, trellis11;
 trellisStruct trellis20, trellis21;
 trellisStruct trellis30, trellis31;
 trellisStruct trellis40, trellis41;
 trellisStruct trellis50, trellis51;
 trellisStruct trellis60, trellis61;
 trellisStruct trellis70, trellis71;
 trellisStruct trellis80, trellis81;
 trellisStruct trellis90, trellis91;
 trellisStruct trellis100, trellis101;
 trellisStruct trellis110, trellis111;
 trellisStruct trellis120, trellis121;
 trellisStruct trellis130, trellis131;
 trellisStruct trellis140, trellis141;
 trellisStruct trellis150, trellis151;

 // Butterfly 1

 trellis00.state = 0; // next state
 trellis00.dir = UPPER; // 0 = upper path
 trellis00.g0g1 = 0; // G0,G1 value

 trellis01.state = 8;
 trellis01.dir = LOWER; // 1 = lower path
 trellis00.g0g1 = 3; // G0,G1 value

 trellis10.state = 0;
 trellis10.dir = UPPER;
 trellis10.g0g1 = 3;

 trellis11.state = 8;
 trellis11.dir = LOWER;
 trellis11.g0g1 = 0;

 // Butterfly 2
 trellis20.state = 1;
 trellis20.dir = UPPER;
 trellis20.g0g1 = 3;

 trellis21.state = 9;
 trellis21.dir = LOWER;
 trellis21.g0g1 = 0;

 trellis30.state = 1;
 trellis30.dir = UPPER;
 trellis30.g0g1 = 0;

 trellis31.state = 9;
 trellis31.dir = LOWER;
 trellis31.g0g1 = 3;

 // Butterfly 3

 21

 trellis40.state = 2;
 trellis40.dir = UPPER;
 trellis40.g0g1 = 1;

 trellis41.state = 10;
 trellis41.dir = LOWER;
 trellis41.g0g1 = 2;

 trellis50.state = 2;
 trellis50.dir = UPPER;
 trellis50.g0g1 = 2;

 trellis51.state = 10;
 trellis51.dir = LOWER;
 trellis51.g0g1 = 1;

 // Butterfly 4
 trellis60.state = 3;
 trellis60.dir = UPPER;
 trellis60.g0g1 = 2;

 trellis61.state = 11;
 trellis61.dir = LOWER;
 trellis61.g0g1 = 1;

 trellis70.state = 3;
 trellis70.dir = UPPER;
 trellis70.g0g1 = 1;

 trellis71.state = 11;
 trellis71.dir = LOWER;
 trellis71.g0g1 = 2;

 // Butterfly 5
 trellis80.state = 4;
 trellis80.dir = UPPER;
 trellis80.g0g1 = 2;

 trellis81.state = 12;
 trellis81.dir = LOWER;
 trellis81.g0g1 = 1;

 trellis90.state = 4;
 trellis90.dir = UPPER;
 trellis90.g0g1 = 1;

 trellis91.state = 12;
 trellis91.dir = LOWER;
 trellis91.g0g1 = 2;

 // Butterfly 6
 trellis100.state = 5;
 trellis100.dir = UPPER;
 trellis100.g0g1 = 1;

 trellis101.state = 13;
 trellis101.dir = LOWER;
 trellis101.g0g1 = 2;

 trellis110.state = 5;
 trellis110.dir = UPPER;
 trellis110.g0g1 = 2;

 trellis111.state = 13;
 trellis111.dir = LOWER;
 trellis111.g0g1 = 1;

 // Butterfly 7
 trellis120.state = 6;
 trellis120.dir = UPPER;
 trellis120.g0g1 = 3;

 22

 trellis121.state = 14;
 trellis121.dir = LOWER;
 trellis121.g0g1 = 0;

 trellis130.state = 6;
 trellis130.dir = UPPER;
 trellis130.g0g1 = 0;

 trellis131.state = 14;
 trellis131.dir = LOWER;
 trellis131.g0g1 = 3;

 // Butterfly 8
 trellis140.state = 7;
 trellis140.dir = UPPER;
 trellis140.g0g1 = 0;

 trellis141.state = 15;
 trellis141.dir = LOWER;
 trellis141.g0g1 = 3;

 trellis150.state = 7;
 trellis150.dir = UPPER;
 trellis150.g0g1 = 3;

 trellis151.state = 15;
 trellis151.dir = LOWER;
 trellis151.g0g1 = 0;

 // Initialize the state Metrics
 prev_state[0] = 0;
 curr_state[0] = 0;
 prev_state[1] = 0;
 curr_state[1] = 0;
 prev_state[2] = 0;
 curr_state[2] = 0;
 prev_state[3] = 0;
 curr_state[3] = 0;
 prev_state[4] = 0;
 curr_state[4] = 0;
 prev_state[5] = 0;
 curr_state[5] = 0;
 prev_state[6] = 0;
 curr_state[6] = 0;
 prev_state[7] = 0;
 curr_state[7] = 0;
 prev_state[8] = 0;
 curr_state[8] = 0;
 prev_state[9] = 0;
 curr_state[9] = 0;
 prev_state[10] = 0;
 curr_state[10] = 0;
 prev_state[11] = 0;
 curr_state[11] = 0;
 prev_state[12] = 0;
 curr_state[12] = 0;
 prev_state[13] = 0;
 curr_state[13] = 0;
 prev_state[14] = 0;
 curr_state[14] = 0;
 prev_state[15] = 0;
 curr_state[15] = 0;

 loop_stream(in) pipeline(1) unroll(UDEPTH){
 in >> g;
 g0 = g.g0;
 g1 = g.g1;

 // Calculate branch metrics (local distance)

 23

 br_m[0] = g0 + g1;
 br_m[1] = g0 - g1;
 br_m[2] = g1 - g0;
 br_m[3] = 0 - (g0 + g1); // apparently Imagine can't do - g0 - g1 b/c of the
first
 // negative sign.

 //
 // Find new State metrics and transitions for each state
 //

 // *********** State 0 *************

 // Get the possible branching options
 // and state transition paths
 br_m1 = br_m[trellis00.g0g1] ;
 path1 = trellis00.dir ;
 br_m2 = br_m[trellis01.g0g1] ;
 path2 = trellis01.dir ;

 temp1 = prev_state[0] + br_m1;
 temp2 = prev_state[0] + br_m2;

 // Select the best option for the state metric
 // and state transition path for this state
 comp = itocc(temp1 > temp2);
 curr_state[0] = select(comp, temp1, temp2);
 state_transition = select(comp, path1, path2);

 // output the state transitions to a stream
 transitions.state0 = state_transition;

 // Feedback
 prev_state[0] = curr_state[0];

 // *********** State 1 *************

 // Get the possible branching options
 // and state transition paths
 br_m1 = br_m[trellis10.g0g1] ;
 path1 = trellis10.dir ;
 br_m2 = br_m[trellis11.g0g1] ;
 path2 = trellis11.dir ;

 temp1 = prev_state[1] + br_m1;
 temp2 = prev_state[1] + br_m2;

 // Select the best option for the state metric
 // and state transition path for this state
 comp = itocc(temp1 > temp2);
 curr_state[1] = select(comp, temp1, temp2);
 state_transition = select(comp, path1, path2);

 // output the state transition to a stream
 transitions.state1 = state_transition;

 // Feedback
 prev_state[1] = curr_state[1];

 // *********** State 2 *************

 // Get the possible branching options
 // and state transition paths
 br_m1 = br_m[trellis20.g0g1] ;
 path1 = trellis20.dir ;
 br_m2 = br_m[trellis21.g0g1] ;
 path2 = trellis21.dir ;

 temp1 = prev_state[2] + br_m1;

 24

 temp2 = prev_state[2] + br_m2;

 // Select the best option for the state metric
 // and state transition path for this state
 comp = itocc(temp1 > temp2);
 curr_state[2] = select(comp, temp1, temp2);
 state_transition = select(comp, path1, path2);

 // output the state transition to a stream
 transitions.state2 = state_transition;

 // Feedback
 prev_state[2] = curr_state[2];

 // *********** State 3 *************

 // Get the possible branching options
 // and state transition paths
 br_m1 = br_m[trellis30.g0g1] ;
 path1 = trellis30.dir ;
 br_m2 = br_m[trellis31.g0g1] ;
 path2 = trellis31.dir ;

 temp1 = prev_state[3] + br_m1;
 temp2 = prev_state[3] + br_m2;

 // Select the best option for the state metric
 // and state transition path for this state
 comp = itocc(temp1 > temp2);
 curr_state[3] = select(comp, temp1, temp2);
 state_transition = select(comp, path1, path2);

 // output the state transition to a stream
 transitions.state3 = state_transition;

 // Feedback
 prev_state[3] = curr_state[3];

 // *********** State 4 *************

 // Get the possible branching options
 // and state transition paths
 br_m1 = br_m[trellis40.g0g1] ;
 path1 = trellis40.dir ;
 br_m2 = br_m[trellis41.g0g1] ;
 path2 = trellis41.dir ;

 temp1 = prev_state[4] + br_m1;
 temp2 = prev_state[4] + br_m2;

 // Select the best option for the state metric
 // and state transition path for this state
 comp = itocc(temp1 > temp2);
 curr_state[4] = select(comp, temp1, temp2);
 state_transition = select(comp, path1, path2);

 // output the state transition to a stream
 transitions.state4 = state_transition;

 // Feedback
 prev_state[4] = curr_state[4];
 // *********** State 5 *************

 // Get the possible branching options
 // and state transition paths
 br_m1 = br_m[trellis50.g0g1] ;
 path1 = trellis50.dir ;
 br_m2 = br_m[trellis51.g0g1] ;
 path2 = trellis51.dir ;

 25

 temp1 = prev_state[5] + br_m1;
 temp2 = prev_state[5] + br_m2;

 // Select the best option for the state metric
 // and state transition path for this state
 comp = itocc(temp1 > temp2);
 curr_state[5] = select(comp, temp1, temp2);
 state_transition = select(comp, path1, path2);

 // output the state transition to a stream
 transitions.state5 = state_transition;

 // Feedback
 prev_state[5] = curr_state[5];
 // *********** State 6 *************

 // Get the possible branching options
 // and state transition paths
 br_m1 = br_m[trellis60.g0g1] ;
 path1 = trellis60.dir ;
 br_m2 = br_m[trellis61.g0g1] ;
 path2 = trellis61.dir ;

 temp1 = prev_state[6] + br_m1;
 temp2 = prev_state[6] + br_m2;

 // Select the best option for the state metric
 // and state transition path for this state
 comp = itocc(temp1 > temp2);
 curr_state[6] = select(comp, temp1, temp2);
 state_transition = select(comp, path1, path2);

 // output the state transition to a stream
 transitions.state6 = state_transition;

 // Feedback
 prev_state[6] = curr_state[6];
 // *********** State 7 *************

 // Get the possible branching options
 // and state transition paths
 br_m1 = br_m[trellis70.g0g1] ;
 path1 = trellis70.dir ;
 br_m2 = br_m[trellis71.g0g1] ;
 path2 = trellis71.dir ;

 temp1 = prev_state[7] + br_m1;
 temp2 = prev_state[7] + br_m2;

 // Select the best option for the state metric
 // and state transition path for this state
 comp = itocc(temp1 > temp2);
 curr_state[7] = select(comp, temp1, temp2);
 state_transition = select(comp, path1, path2);

 // output the state transition to a stream
 transitions.state7 = state_transition;

 // Feedback
 prev_state[7] = curr_state[7];
 // *********** State 8 *************

 // Get the possible branching options
 // and state transition paths
 br_m1 = br_m[trellis80.g0g1] ;
 path1 = trellis80.dir ;
 br_m2 = br_m[trellis81.g0g1] ;
 path2 = trellis81.dir ;

 temp1 = prev_state[8] + br_m1;
 temp2 = prev_state[8] + br_m2;

 26

 // Select the best option for the state metric
 // and state transition path for this state
 comp = itocc(temp1 > temp2);
 curr_state[8] = select(comp, temp1, temp2);
 state_transition = select(comp, path1, path2);

 // output the state transition to a stream
 transitions.state8 = state_transition;

 // Feedback
 prev_state[8] = curr_state[8];
 // *********** State 9 *************

 // Get the possible branching options
 // and state transition paths
 br_m1 = br_m[trellis90.g0g1] ;
 path1 = trellis90.dir ;
 br_m2 = br_m[trellis91.g0g1] ;
 path2 = trellis91.dir ;

 temp1 = prev_state[9] + br_m1;
 temp2 = prev_state[9] + br_m2;

 // Select the best option for the state metric
 // and state transition path for this state
 comp = itocc(temp1 > temp2);
 curr_state[9] = select(comp, temp1, temp2);
 state_transition = select(comp, path1, path2);

 // output the state transition to a stream
 transitions.state9 = state_transition;

 // Feedback
 prev_state[9] = curr_state[9];
 // *********** State 10 *************

 // Get the possible branching options
 // and state transition paths
 br_m1 = br_m[trellis100.g0g1] ;
 path1 = trellis100.dir ;
 br_m2 = br_m[trellis101.g0g1] ;
 path2 = trellis101.dir ;

 temp1 = prev_state[10] + br_m1;
 temp2 = prev_state[10] + br_m2;

 // Select the best option for the state metric
 // and state transition path for this state
 comp = itocc(temp1 > temp2);
 curr_state[10] = select(comp, temp1, temp2);
 state_transition = select(comp, path1, path2);

 // output the state transition to a stream
 transitions.state10 = state_transition;

 // Feedback
 prev_state[10] = curr_state[10];
 // *********** State 11 *************

 // Get the possible branching options
 // and state transition paths
 br_m1 = br_m[trellis110.g0g1] ;
 path1 = trellis110.dir ;
 br_m2 = br_m[trellis111.g0g1] ;
 path2 = trellis111.dir ;

 temp1 = prev_state[11] + br_m1;
 temp2 = prev_state[11] + br_m2;

 27

 // Select the best option for the state metric
 // and state transition path for this state
 comp = itocc(temp1 > temp2);
 curr_state[11] = select(comp, temp1, temp2);
 state_transition = select(comp, path1, path2);

 // output the state transition to a stream
 transitions.state11 = state_transition;

 // Feedback
 prev_state[11] = curr_state[11];
 // *********** State 12 *************

 // Get the possible branching options
 // and state transition paths
 br_m1 = br_m[trellis120.g0g1] ;
 path1 = trellis120.dir ;
 br_m2 = br_m[trellis121.g0g1] ;
 path2 = trellis121.dir ;

 temp1 = prev_state[12] + br_m1;
 temp2 = prev_state[12] + br_m2;

 // Select the best option for the state metric
 // and state transition path for this state
 comp = itocc(temp1 > temp2);
 curr_state[11] = select(comp, temp1, temp2);
 state_transition = select(comp, path1, path2);

 // output the state transition to a stream
 transitions.state12 = state_transition;

 // Feedback
 prev_state[12] = curr_state[12];
 // *********** State 13 *************

 // Get the possible branching options
 // and state transition paths
 br_m1 = br_m[trellis130.g0g1] ;
 path1 = trellis130.dir ;
 br_m2 = br_m[trellis131.g0g1] ;
 path2 = trellis131.dir ;

 temp1 = prev_state[13] + br_m1;
 temp2 = prev_state[13] + br_m2;

 // Select the best option for the state metric
 // and state transition path for this state
 comp = itocc(temp1 > temp2);
 curr_state[13] = select(comp, temp1, temp2);
 state_transition = select(comp, path1, path2);

 // output the state transition to a stream
 transitions.state13 = state_transition;

 // Feedback
 prev_state[13] = curr_state[13];
 // *********** State 14 *************

 // Get the possible branching options
 // and state transition paths
 br_m1 = br_m[trellis140.g0g1] ;
 path1 = trellis140.dir ;
 br_m2 = br_m[trellis141.g0g1] ;
 path2 = trellis141.dir ;

 temp1 = prev_state[14] + br_m1;
 temp2 = prev_state[14] + br_m2;

 28

 // Select the best option for the state metric
 // and state transition path for this state
 comp = itocc(temp1 > temp2);
 curr_state[14] = select(comp, temp1, temp2);
 state_transition = select(comp, path1, path2);

 // output the state transition to a stream
 transitions.state14 = state_transition;

 // Feedback
 prev_state[14] = curr_state[14];
 // *********** State 15 *************

 // Get the possible branching options
 // and state transition paths
 br_m1 = br_m[trellis150.g0g1] ;
 path1 = trellis150.dir ;
 br_m2 = br_m[trellis151.g0g1] ;
 path2 = trellis151.dir ;

 temp1 = prev_state[15] + br_m1;
 temp2 = prev_state[15] + br_m2;

 // Select the best option for the state metric
 // and state transition path for this state
 comp = itocc(temp1 > temp2);
 curr_state[15] = select(comp, temp1, temp2);
 state_transition = select(comp, path1, path2);

 // output the state transition to a stream
 transitions.state15 = state_transition;

 // Feedback
 prev_state[15] = curr_state[15];

 out << transitions;

 } // End loop_stream

 final_metric.state0 = curr_state[0];
 final_metric.state1 = curr_state[1];
 final_metric.state2 = curr_state[2];
 final_metric.state3 = curr_state[3];
 final_metric.state4 = curr_state[4];
 final_metric.state5 = curr_state[5];
 final_metric.state6 = curr_state[6];
 final_metric.state7 = curr_state[7];
 final_metric.state8 = curr_state[8];
 final_metric.state9 = curr_state[9];
 final_metric.state10 = curr_state[10];
 final_metric.state11 = curr_state[11];
 final_metric.state12 = curr_state[12];
 final_metric.state13 = curr_state[13];
 final_metric.state14 = curr_state[14];
 final_metric.state15 = curr_state[15];

 out_final_metric << final_metric;
}

bestpath_kc.cpp
#include "idb_kernelc.hpp"
#include "viterbi_h.hpp"
#include "idb_kernelc2.hpp"
#include "unroll_depth.h"

 29

KERNELDEF(bestpath, "Viterbi/bestpath_kc.uc");

// in - input stream of state transition values
// in_state_metric - input stream of final state metric values
// out - output stream of decoded output

kernel bestpath(istream <statesRecord> in, istream <statesRecord> in_state_metric, ostream<int>
out, uc<int>& loop_cnt)
{

 int count = 0;
 //int tcount;
 int max_state = 0;
 int max_state_metric = 0;
 int current_state_metric;
 int state_transition;
 int path;
 int dir;

// uc<int> cnt;

// cnt = commclperm(8, count, loop_cnt);

 statesRecord final_state_metric; // The final state metrics for input
 array<int> state_metric_arr (16); // Temp array to hold state metric values
 statesRecord transition;
 array<int> transition_arr (16);

 cc comp, comp2;

 in_state_metric >> final_state_metric;

 // How much less efficient is this than streaming 16 ints and looping through that
stream.
 state_metric_arr[0] = final_state_metric.state0;
 state_metric_arr[1] = final_state_metric.state1;
 state_metric_arr[2] = final_state_metric.state2;
 state_metric_arr[3] = final_state_metric.state3;
 state_metric_arr[4] = final_state_metric.state4;
 state_metric_arr[5] = final_state_metric.state5;
 state_metric_arr[6] = final_state_metric.state6;
 state_metric_arr[7] = final_state_metric.state7;
 state_metric_arr[8] = final_state_metric.state8;
 state_metric_arr[9] = final_state_metric.state9;
 state_metric_arr[10] = final_state_metric.state10;
 state_metric_arr[11] = final_state_metric.state11;
 state_metric_arr[12] = final_state_metric.state12;
 state_metric_arr[13] = final_state_metric.state13;
 state_metric_arr[14] = final_state_metric.state14;
 state_metric_arr[15] = final_state_metric.state15;

 loop_count(loop_cnt) pipeline(1) unroll(UDEPTH){

 // Select end point for best path
 ;
 current_state_metric = state_metric_arr[count];
 comp = itocc(current_state_metric > max_state_metric);
 max_state = select(comp, count, max_state);
 max_state_metric = select(comp, current_state_metric, max_state_metric);
 count = count + 1;
 }

 in >> transition;

 transition_arr[0] = transition.state0;
 transition_arr[1] = transition.state1;
 transition_arr[2] = transition.state2;
 transition_arr[3] = transition.state3;

 30

 transition_arr[4] = transition.state4;
 transition_arr[5] = transition.state5;
 transition_arr[6] = transition.state6;
 transition_arr[7] = transition.state7;
 transition_arr[8] = transition.state8;
 transition_arr[9] = transition.state9;
 transition_arr[10] = transition.state10;
 transition_arr[11] = transition.state11;
 transition_arr[12] = transition.state12;
 transition_arr[13] = transition.state13;
 transition_arr[14] = transition.state14;
 transition_arr[15] = transition.state15;

 //tcount = 0;
 loop_stream(in) {
 dir = transition_arr[max_state];
 out << dir;
 max_state = shift(max_state, 1) + dir; // This shifts state to left, then
 //
tacks on the direction as LSB to get next state
 max_state = max_state & 15; // puts 0 in the upper half-
word of max_state
 in >> transition;
 transition_arr[0] = transition.state0;
 transition_arr[1] = transition.state1;
 transition_arr[2] = transition.state2;
 transition_arr[3] = transition.state3;
 transition_arr[4] = transition.state4;
 transition_arr[5] = transition.state5;
 transition_arr[6] = transition.state6;
 transition_arr[7] = transition.state7;
 transition_arr[8] = transition.state8;
 transition_arr[9] = transition.state9;
 transition_arr[10] = transition.state10;
 transition_arr[11] = transition.state11;
 transition_arr[12] = transition.state12;
 transition_arr[13] = transition.state13;
 transition_arr[14] = transition.state14;
 transition_arr[15] = transition.state15;
 // tcount = tcount + 1;
 }
 //got output the last bit
 dir = transition_arr[max_state];
 out << dir;
}

indexGen_kc.cpp
#include "idb_kernelc.hpp"
#include "indexGen.hpp"
#include "idb_kernelc2.hpp"
#include "unroll_depth.h"
/*
 You may need to change the kernel definition
 (see wavelets.hpp)
*/

KERNELDEF(index, "Viterbi/indexGen_kc.uc");

kernel index(uc<int>& start, uc<int>& rec_stride, uc<int>& size, ostream<int> out)
{

 int myId = cid();
 int index;
 int stride;
 int tmp;

 index = commclperm(8,index, start);
 stride= commclperm(8,stride, rec_stride);

 index = index - 1;

 31

 //tmp = myId*stride;
 //tmp2 = 8 * stride;

 loop_count(size) pipeline(1)unroll(UDEPTH){
 tmp = lo((index - myId)*stride);
 out<< tmp;
 index = index - 8;
 }
}

Header Files:

#ifndef _INDEXGEN
#define _INDEXGEN

#include "idb_types.hpp"
#include "idb_deftypes.hpp"

/*
 You may need to change the kernel declarations
 (including name) and add new kernels.
*/

kernel index(uc<int>& start, uc<int>& rec_stride, uc<int>& size, ostream<int> out);

KERNELDECL(index);

#define index KERNELCALL(index)

#include "idb_undeftypes.hpp"

#endif
/**/

#ifndef _UNROLL_DEPTH__H
#define _UNROLL_DEPTH__H

#define UDEPTH 1

#endif

/***/

#ifndef _VITERBI_H
#define _VITERBI_H

#include "idb_types.hpp"
#include "idb_deftypes.hpp"

#define NUM_STATES 16

record encodedG{
 int g0, g1;
 // may need to add 6 more dummy variables to make Imagine happy
};

// Trellis structure definition
record trellisStruct{
 int state; // next state
 int dir; // direction of butterfly - upper or lower path
 int g0g1; // output 1 and output2 combined for butterfly
 // g0g1 = 0, g0,g1 = 0,0
 // g0g1 = 1, g0,g1 = 0,1
 // g0g1 = 2, g0,g1 = 1,0
 // g0g1 = 3, g0,g1 = 1,1
};

 32

// State Record.
// Groups the 16 states together in a array of 16 integers.
record statesRecord{
 //int state[NUM_STATES];
 int state0;
 int state1;
 int state2;
 int state3;
 int state4;
 int state5;
 int state6;
 int state7;
 int state8;
 int state9;
 int state10;
 int state11;
 int state12;
 int state13;
 int state14;
 int state15;
};

kernel statemetric(istream<encodedG> in, ostream<statesRecord> out, ostream<statesRecord>
out_final_metric);
kernel bestpath(istream<statesRecord> in, istream<statesRecord> in_state_metric, ostream<int>
out, uc<int>& loop_cnt);

KERNELDECL(statemetric);
KERNELDECL(bestpath);

#define statemetric KERNELCALL(statemetric)
#define bestpath KERNELCALL(bestpath)

#include "idb_undeftypes.hpp"

#endif

 33

Appendix B: C54x DSP Code
;;; Viterbi decoder: rate 1/2, 4 unit delays, 16 delay states, 64-bit
;;; frame, no puncturing.
;;; You're code will load the 3-bit soft decision decoder inputs into
;;; the data memory

 .mmregs ; Use globally defined symbolic names for
; assembler related variables
 .def start
 .ref IN_BUF

;;; **
;;; Constants
IN_PORT .set 0h ; Address of input port
OUT_PRT .set 1h ; Address of output port
 ;; Define constants here

;;; **
;;; Uninitialized memory allocation
 ;; Define system variables and arrays here
 ;; Use .bss directive
 .bss Metric, 32, 1, 1 ;;Circular buffer for Metric storage
 .bss Trans_Buff, 128 ;;Transition Bufer for 128 pairs
 .bss Distance, 2 ;;Local Distance storage
 .bss Output_Buff, 8 ;;Output Buffer for 128 bits of data

 ;;; Traceback constants
T_Buff_End .equ(Trans_Buff+127+4) ;; END OF TRANSITION BUFFER
OUTWORDS .equ 8

BFLY_FORW .macro
 ;; AR3 is the new ptr at 0
 ;; AR4 is the new ptr at 8
 ;; AR5 is the old metric ptr
 DADST *AR5,A ;A = Old_Met(2*j)+T // Old_Met(2*j+1)-T
 DSADT *AR5+%,B ;B = Old_Met(2*j)-T // Old_Met(2*j+1)+T
 CMPS A,*AR3+% ;New_Met(j)=Max(Old_Met(2*j+1)+T,Old_Met(2*j+1)-T)
 ;TRN=TRN << 1
 ;If(Old_Met(2*j)+T =< Old_Met(2*j+1)-T) Then TRN[0]=1

CMPSB,*AR4+% ;New_Met(j+2^(k-2))=Max(Old_Met(2*j)+T,Old_Met(2*j+1)-T)
 ;TRN=TRN << 1
 ;If(Old_Met(2*j)-T =< Old_Met(2*j+1)+T) Then TRN[0]=1
 .endm

BFLY_REV .macro
 ;; AR3 is the new ptr at 0
 ;; AR4 is the new ptr at 8
 ;; AR5 is the old metric ptr
 DSADT *AR5,B ;A=Old_Met(2*j)-T // Old_Met(2*j+1)+T
 DADST *AR5+%,A ;B=Old_Met(2*j)+T // Old_Met(2*j+1)-T
 CMPS B,*AR3+% ;New_Met(j)=(Max (Old_Met(2*j)+T,Old_Met(2*j+1)-T)
 ;TRN=TRN<<1
 ;If (Old_Met(2*j)+T =< Old_Met(2*j+1)-T) Then TRN[0]=1
 CMPS A,*AR4+% ;New_Met(j+2^(k-2))=(Max (Old_Met(2*j) T,Old_Met(2*j+1)+T)
 ;TRN=TRN<<1
 ;If (Old_Met(2*j)+T =< Old_Met(2*j+1)-T) Then TRN[0]=1
 .endm

BFLY_END .macro
 ;; AR3 is the new ptr at 0
 ;; AR4 is the new ptr at 8
 ;; AR5 is the old metric ptr
 DADST *AR5,A ;A = Old_Met(2*j)+T // Old_Met(2*j+1)-T
 DSADT *AR5+%,B ;B = Old_Met(2*j)-T // Old_Met(2*j+1)+T
 CMPS A,*AR3+0% ;New_Met(j) = Max(Old_Met(2*j+1)+T,Old_Met(2*j+1)-T)
 ;TRN=TRN << 1
 ;If(Old_Met(2*j)+T =< Old_Met(2*j+1)-T) Then TRN[0]=1

CMPS B,*AR4+0% ;New_Met(j+2^(k-2)) = Max(Old_Met(2*j)+T,Old_Met(2*j+1)-T)
 ;TRN=TRN << 1
 ;If(Old_Met(2*j)-T =< Old_Met(2*j+1)+T) Then TRN[0]=1

 34

 .endm

BIT_SHIFT .macro ;;Computes bit position and next state
 SFTL A, -3, B
 AND AR7, B
 ADD A, #ONE, B
 STLM B, T

 NOP ;; Stall between STLM and BITT

 BITT *AR1-
 ROLTC A
 .endm

;Important constants for the viterbi decoder
WORD .set 16
K .set 5
ONE .set 1
LOOP .set 127

 .text
 NOP
start:
 ;; Initialize key bits: C16, OVM, AX0
 ;;SSBX SXM
 ;;SSBX C16
 ;;SSBX OVM
 STM #0X2B80, ST1 ;;ALL in one from A.Fernandez in class

 ;;Initialize circular buffer
 STM #32, BK
 STM #9, AR0

 ;;LOAD input data
 STM #IN_BUF, AR1
 RPT #(256-1)
 PORTR #IN_PORT, *AR1+

 ;;Initial State Metric table and ptr to input data
 STM #IN_BUF, AR1
 STM #Distance, AR2
 STM #(Metric+16), AR3
 STM #(Metric+8), AR4
 STM #(Metric+16), AR5
 STM #Trans_Buff, AR6
 STM #ONE, AR7 ;; STORE 1 FOR LATER USE

 ;;Init Metric Table
 ST #0x0200, *AR3+%
 RPT #(WORD-2)
 ST #0xFE00, *AR3+%

;;**************INITIALIZATION DONE TIME FOR VITERBI*****************

 STM #LOOP, BRC
 RPTB TraceBack-1

 ;;Local Distance calc, Load input data
 LD *AR1+, 16, A
 SUB *AR1, 16, A, B
 STH B, *AR2+
 ADD *AR1+, 16, A, B
 STH B, *AR2

 LD *AR2-, T ;; TEMP = LOCAL DISTANCE(0)
 BFLY_FORW ;; STATES 0000 AND 1000
 BFLY_REV ;; STATES 0001 AND 1001

 LD *AR2+, T ;; TEMP = LOCAL DISTANCE(1)
 BFLY_FORW ;; STATES 0010 AND 1010
 BFLY_REV ;; STATES 0011 AND 1011

 35

 BFLY_REV ;; STATES 0100 AND 1100
 BFLY_FORW ;; STATES 0101 AND 1101

 LD *AR2-, T ;; TEMP = LOCAL DISTANCE(0)
 BFLY_REV ;; STATES 0110 AND 1110
 BFLY_END ;; STATES 0111 AND 1111

 ST TRN, *AR6+ ;; STORE PATH IN TRANSITION BUFFER

TraceBack:
 ;; PAD output with Zeroes for correct output
 ST #0, *AR6+
 ST #0, *AR6+
 ST #0, *AR6+
 ST #0, *AR6+

 RSBX OVM ;; overflow off

 STM #T_Buff_End, AR1 ;; END OF TRANSITION BUFFER
 STM #OUTWORDS-1, AR2 ;; # OUTPUT WORDS -1
 STM #Output_Buff+8-1, AR3 ;; end of output buffer
 NOP
 MVMM AR2, AR4
 LD #0, A ;; Load Initial State in A: 0000

 ;;Time to do the traceback
 STM #(15), BRC ;; Loop 15 times
T_LOOP: RPTB #(TBEND-1)

 BIT_SHIFT

TBEND: STL A, *AR3-
 BANZD T_LOOP, *AR2-

 ;; From TI Vitberi Doc.
 STM #15, BRC
 MAR *AR3+
 LD *AR3, A

RVS: SFTA A, -1, A
 STM #15, BRC
 RPTB RVS2-1
 ROL B
 SFTA A, -1, A

RVS2: BANZD RVS, *AR4-
 STL B, *AR3+
 LD *AR3, A

 ;;; Write Output Data
 STM #Output_Buff, AR2
 RPT #(8-1)
 PORTW *AR2+, OUT_PRT

DONE: B DONE

