EE482C Project

Stream Cache Architectures for lrregular
Stream Applications

Timothy Knight
Arjun Singh
Jung Ho Ahn

Motivation

Irregular stream applications
» Perform a data-dependent traversal of an arbitrary graph
= Pointer chasing

Index streams

» Method for traversing irregular streams on a "traditional’
stream architecture (i.e.) Imagine

» |nefficient
- Wasted SRF space
- Wasted memory bandwidth

Architectural enhancements

= Stream cache

= |ndexed SRF
= 7

Stream Cache

= Amplifies memory bandwidth in presence of
temporal locality of reference

* Avoids repeated memory accesses for same
address

= Allowing clusters to issue memory requests
through a cluster cache avoids replicating data in
the SRF.

Applications Studied

Application 1

» All updates committed after all computations done
= Pseudo code:

/[Computation phase
for each vertex v:
v.newdata = kernel (v.data, v.neigh.data)

// Update phase
for each vertex v:
v.data = v.newdata

Applications Studied (Cont.)

Application 2

Updates committed as soon as computed

Conceptually an advancing wave-front of
computation in a DAG

Chosen to create coherence issues
Pseudo code:

repeat until all vertices are updated:
for each vertex v with valid predecessors:
v.data = kernel (v.neigh.data)

Architectures Modeled

No cache (baseline)
= 16 clusters
= 8 banked memory

2. Cache accessible from SRF
3. Dedicated cache accessible from clusters
4. (Cache accessible from clusters and SRF

All cache models:
= Have 8 banks, matching the memory
= Have 1 word per cache line
= Are not coherent

Architectures Modeled (Cont.)

LRF

Cluste

Memory
System

Cache

SRF

=

|

Loc. DRAMs

Loc. DRAMs

Net

Net

Architecture 1

Architecture 2

Architecture 3

Architecture 4

Hardware Costs

Cache in memory system
8 SRAM banks, associated logic and buffers
= Need 1 word of tag storage per address cached

Enabling cluster memory access

= Reorder buffer: 16x 2/3*-ported register files
= Requests FIFO/AG
= 8 new buses between memory and clusters

Dedicated cluster cache (additional costs)
= 2 full 8x8 crossbars

Simulation Environment

Implemented a ‘cycle-by-cycle performance
simulator’:

Not functionally cycle-accurate

Modeled throughputs, latencies, and resource
constraints of architectures

Applications coded in ‘'macrocode’

Average sim: 5,000,000 cycles in 15 minutes of
real time

Parameters:
- Data sets: record size, graph size, connectivity, locality
- Apps: kernel computation time, strip size, cache use

- Model: throughputs, latencies, mem. sizes, number of
nodes, cache organization

Results

Speedup vs. K (app1)

2000 4000 6000 8000 10000 12000

K (cycles)

Results (cont.)

Speedup vs. K (app2)

—— 1 =2 -3 <4

2000 4000 6000 8000 10000 12000

K (cycles)

Results (cont.)

Speedup vs. ROB length (app2)

1 -+ 3 4

200 300 400
ROB length

Results (cont.)

Other results observed:
* |ncrease of speedup with increasing degree

= Relationship between speedup and number of
words of data per record

= Constant speedup with increasing number of
nodes for small data sets; large data sets blow up
our simulator with many nodes

»= Constant speedup with increasing number of
vertices

Conclusion

= A stream cache can improve performance on
an irregular stream app.

= Speedups of up to 3.5 were observed in our
experiments
= A cache is most useful when the kernel
performs little computation on each record.

= Various pros and cons between different
cache architectures

= The architecture which performs best is

determined by the choice of application and data
set

Discussion

Limitations on speedup from a stream cache:

Amdahl’s Law: only some of the memory requests
exhibit temporal locality

Bank conflicts

Dependencies in application
Available locality

‘Preprocessing’ overhead

Future Work

= Study cache performance on real
applications in ISIM.

Questions?

