
EE482C Project

Stream Cache Architectures for Irregular 
Stream Applications

Timothy Knight
Arjun Singh

Jung Ho Ahn



Motivation

Irregular stream applications
Perform a data-dependent traversal of an arbitrary graph
Pointer chasing

Index streams
Method for traversing irregular streams on a `traditional’ 
stream architecture (i.e.) Imagine
Inefficient

- Wasted SRF space
- Wasted memory bandwidth

Architectural enhancements
Stream cache
Indexed SRF
… ?



Stream Cache

Amplifies memory bandwidth in presence of 
temporal locality of reference

Avoids repeated memory accesses for same 
address

Allowing clusters to issue memory requests 
through a cluster cache avoids replicating data in 
the SRF.



Applications Studied

Application 1

All updates committed after all computations done
Pseudo code:

// Computation phase
for each vertex v:

v.newdata = kernel (v.data, v.neigh.data)

// Update phase
for each vertex v:

v.data = v.newdata



Applications Studied (Cont.)

Application 2

Updates committed as soon as computed
Conceptually an advancing wave-front of 
computation in a DAG
Chosen to create coherence issues
Pseudo code:

repeat until all vertices are updated:
for each vertex v with valid predecessors:

v.data = kernel (v.neigh.data)



Architectures Modeled

1. No cache (baseline)
16 clusters
8 banked memory

2. Cache accessible from SRF
3. Dedicated cache accessible from clusters
4. Cache accessible from clusters and SRF

All cache models:
Have 8 banks, matching the memory
Have 1 word per cache line
Are not coherent



Architectures Modeled (Cont.)

LRF

SRF

Loc. DRAMs

Net

LRF

SRF

Loc. DRAMs

Net

Cache

SRF

Loc. DRAMs

Net

Cache

ALUs ALUs ALUs

Architecture 1 Architecture 2 Architecture 3

LRF LRF

SRF

Loc. DRAMs

Net

Cache

ALUs

Architecture 4

Memory
System

Clusters



Hardware Costs

• Cache in memory system
8 SRAM banks, associated logic and buffers
Need 1 word of tag storage per address cached

• Enabling cluster memory access
Reorder buffer: 16x 2/3*-ported register files
Requests FIFO / AG
8 new buses between memory and clusters

• Dedicated cluster cache (additional costs)
2 full 8x8 crossbars



Simulation Environment

Implemented a ‘cycle-by-cycle performance 
simulator’:

Not functionally cycle-accurate
Modeled throughputs, latencies, and resource 
constraints of architectures
Applications coded in `macrocode’
Average sim: 5,000,000 cycles in 15 minutes of 
real time
Parameters:

- Data sets: record size, graph size, connectivity, locality
- Apps: kernel computation time, strip size, cache use
- Model: throughputs, latencies, mem. sizes, number of 

nodes, cache organization



Results

Speedup vs. K (app1)

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2000 4000 6000 8000 10000 12000

K (cycles)

Sp
ee

du
p

1 2 3 4



Results (cont.)

Speedup vs. K (app2)

0

0.5

1

1.5

2

2.5

0 2000 4000 6000 8000 10000 12000

K (cycles)

Sp
ee

du
p

1 2 3 4



Results (cont.)

Speedup vs. ROB length (app2)

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 100 200 300 400 500 600

ROB length 

Sp
ee

du
p

1 3 4



Results (cont.)

Other results observed:
Increase of speedup with increasing degree
Relationship between speedup and number of 
words of data per record
Constant speedup with increasing number of 
nodes for small data sets; large data sets blow up 
our simulator with many nodes
Constant speedup with increasing number of 
vertices



Conclusion

A stream cache can improve performance on 
an irregular stream app.

Speedups of up to 3.5 were observed in our 
experiments

A cache is most useful when the kernel 
performs little computation on each record.
Various pros and cons between different 
cache architectures

The architecture which performs best is 
determined by the choice of application and data 
set



Discussion

Limitations on speedup from a stream cache:
Amdahl’s Law: only some of the memory requests 
exhibit temporal locality
Bank conflicts
Dependencies in application
Available locality
‘Preprocessing’ overhead



Future Work

Study cache performance on real 
applications in ISIM.



Questions?


