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1 Introduction

This project examines various stream cache architectures for enabling the efficient implementation of irregular
stream applications.

2 Architectures Evaluated
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Parameters Varied in Each Architecture Evaluated:

- cache organization
- cache access latency
- cache access throughput
- cache size
- number of nodes

Parameters Kept Constant Across All Experiments:

- number of clusters
- DRAM size
- SRF size
- SRF to MS bandwidth
- SRF to cluster bandwidth
- inter-cluster switch bandwidth
- network bandwidth

Add-and-Store:

Each architecture is evaluated with and without
hardware add-and-store support for application 2.

5 Architectures to be Evaluated:

1. Baseline - no stream cache.
2. Memory system cache (non-coherent).
3. Memory system cache (partially coherent).
4. Cluster cache (non-coherent, read-only, miss-fail).
5. Cluster cache (non-coherent, read-only, miss-stall).

Figure 1: Architectures evaluated

Figure 1 illustrates the 5 cache architectures evaluated. This section describes each of the architectural
features employed.
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2.1 Non-coherent Memory System Stream Cache

The memory system stream cache, when used, may be non-coherent. The following are salient points
regarding this implementation of the stream cache.

• The scalar program has explicit control of the stream cache; prefetches, loads, invalidates, and flushes
must all be initiated by stream instructions.

• The stream cache is able to cache both local and remote addresses.

• Stream cache elements can be read-only or write-back. Read-only elements, which are either ValidA
or ValidB, can be gang-invalidated.

• The hardware doesn’t provide any coherence support; stream cache entries which are not read-only are
write-back, and if multiple nodes are writing to the same value, then they will simply have different
copies of the same data in their stream caches.

• When a dirty stream cache entry is flushed, it is written back to memory. If multiple nodes are
all updating the same memory location, then the final value after all the updates have completed is
non-deterministic.

• The segment registers contain a bit which can override requests to cache data from that segment.

• An add-and-store operation always goes to memory, regardless of whether the destination address is
cached.

2.2 Partially Coherent Memory System Stream Cache

The memory system stream cache may also be partially coherent, via the following memory locking mecha-
nism. Instead of issuing READ and WRITE requests to the memory system, each node will issue either:

• READ-LOCK (RL)

• UNLOCK (U)

• READ-WITH-INTENT-TO-WRITE (RIW)

• WRITE-UNLOCK (WU)

Each memory address can be considered an instantiation of the state machine illustrated in figure 2.
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Figure 2: Memory element finite state machine
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2.3 Non-coherent Read-Only Miss-Fail Cluster Stream Cache

Each cluster may have a private stream cache with the following features:

• There is no hardware support for coherency in these caches, either within a node or between nodes.

• The caches are read-only all the time; new entries can be loaded, but existing entries can’t be updated.

• The caches must be explicitly loaded (from the SRF) and invalidated by the microcontroller.

• The assumption is made that the caches never miss; the cache read returns an undefined value in the
event of a cache miss.

2.4 Non-coherent Read-Only Miss-Stall Cluster Stream Cache

This incarnation of the cluster cache differs from the miss-fail version in the handling of cache misses. In
the event of a miss in the miss-stall cluster cache architecture, the following happens:

• The microcontroller stalls all the clusters.

• The microcontroller branches to a ‘cache load’ subroutine.

• Each cluster cache outputs signals describing whether or not the last access was a miss, and if so, what
address was needed.

• The microcontroller checks all the caches which didn’t miss in parallel to see if any have the address
which was missed; if it is found, it is copied to the cache which needs it. The communication occurs
over the inter-cluster switch. For there to not be a conflict with an inter-cluster communication which
was being prepared when the miss occurred, there must be some local registers on the communication
port which are reserved for cache miss handling.

• If the address wasn’t found in another cache it is fetched from memory, via the SRF with an index
stream of length one.

• The cache is updated with an LRU policy.

2.5 Add-and-Store

The hardware can support an add-and-store operation, in which a node can send a value to be added to a
global memory location atomically. The implementation is as follows:

• The clusters output a series of (VirtAddr, PartialSum) tuples which are buffered in the SRF. Physically,
these may be stored in the SRF as two different streams: one of addresses, and the other of the partial
sums.

• The stream controller issues an instruction to read the buffer of partial sums from the SRF and send
add-and-store operations for each value to the appropriate address.

• Upon reception of an add-and-store request, the memory-network interface passes the partial sum to
the memory system, which adds it to the specified address.

Note that the software is responsible for the ordering of the partial sum updates across nodes. (i.e.) If
multiple nodes are all computing partial sums to add to the same memory location, the software is responsible
for ensuring that the partial sums from different sources are added together and to the destination memory
address in a deterministic order, if that is a feature the application requires. The issue is that due to rounding
errors, adding the partial sums in different orders results in different final values.
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3 Applications Using Irregular Streams

Figure 3 lists 3 applications which use irregular streams. These applications will be implemented for each of
the architectures modeled.

for all elements v:
        v' = v
for each global iteration:
        for all pairs of neighboring elements (v,w):
                f = kernel  (v,w)
                v'.data += f
                w'.data += f
        for all elements v:
                v = v'

for each global iteration:
        for all elements v:
                v'.data = kernel  (v, v.neighbors)
                v'.neighbors = v.neighbors
        for all elements v:
                v = v'

repeat until all elements valid:
        for all elements v with no invalid predecessors:
                v.data = kernel  (v.predecessors)

Application 1:
Each iteration, the new value of each element is
computed from its neighbours. The update of all
elements occurs at the end of the iteration.

The input stream is a directed, possibly cyclic,
graph.

Application 2:
This is the same as application 1, but the kernel
function is now exposed as computing a function
of the current element and each neighbor element,
and then adding that result from each neighbor to
the original element's value to arrive at the new
value. An example is the computation of forces
between a particle and all the nearby particles. The
code in application 1 would still work for this
application, but a more efficient algorithm may be
to compute the partial sums for each unique
(unordered) pair and add them one at a time; the
efficiency comes from not computing the same
force between each pair of neighboring elements
twice.

The input stream is an undirected graph.

Application 3:
In this application each element is written as soon as
it is computed, and the new value must be used from
then on; it can be conceptually viewed as an
`advancing wave-front' of computation. An example
of this type of application is when dynamic
programming is used to solve a problem.

The input stream is a directed acyclic graph, and
each element is computed using the new values of its
predecessor elements.

Application Parameters Varied:

- input stream size
- record size
- input data connectivity
     - mean degree of vertices
     - variance of vertex degrees
     - locality of connections
- data structures:
     - fixed (maximum) degree graphs
     - arbitrary degree graphs
- partitioning of data across nodes
- number of cycles per kernel invocation

Figure 3: Irregular stream applications evaluated
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