
EE482C Project:

Stream Cache Architectures for Irregular Stream Applications

Timothy Knight Arjun Singh Jung Ho Ahn

June 6, 2002

2 Irregular Stream Data Structure 1

1 Introduction

Irregular stream applications, such as programs which

traverse an arbitrary graph data set, don’t follow the

‘traditional’ stream model that Imagine was designed to

exploit, in which records are gathered into the SRF in a

predefined order (often sequentially or on a fixed stride)

and then operated on by a kernel. Index streams can

be used to traverse an irregular structure, but several

inefficiencies may result:

• Irregular stream records may contain many pointers

to other records, and a large percentage of these

may be null, wasting SRF space if the entire record

is read from memory.

• If a record is needed several times during the course

of a kernel, for example if it is a neighbour of mul-

tiple other records, it may be read from memory

repeatedly, wasting memory bandwidth.

• A record which is read multiple times in one or more

index loads will also be replicated in the SRF.

• The overhead of doing pointer chasing using index

streams will increase as the depth of the pointer

chain increases, as for each level an indexed load

from the memory to the SRF is needed, and if any

pointer arithmetic is required a kernel must run be-

tween loads to generate the addresses.

This project examines various stream cache architec-

tures for reducing the memory bandwidth wasted in re-

peated loads of words from memory. A secondary con-

sequence of the work presented in this document is that

a cluster cache system can also reduce the SRF space

wasted due to both null pointer storage and data repli-

cation.

2 Irregular Stream Data Structure

In all of the experiments in this project, the following

is the record definition used.

record {
float data0, ..., dataD−1;

float newdata0, ..., newdataD−1;

int numneigh;

pointer neigh0, ..., neighM−1;

}

It is assumed that the records are laid out sequentially

in memory, and that each node, in a multi-node

simulation, has the same number of records.

3 Applications

The two applications described in this section were used

to evaluate the architectures examined in this project.

June 6, 2002

4 Stream Cache Architectures 2

3.1 Application 1: All updates committed

after all computations are done

Application 1 is simply a graph traversal application

in which the ‘new’ value for each vertex is computed

from the ‘current’ values of itself and its neighbouring

vertices. The pseudocode for application 1 is as follows.

// Computation phase

for each vertex v:

v.newdata∗ = kernel (v.data∗, v.neigh∗.data∗)

// Update phase

for each vertex v:

v.data∗ = v.newdata∗

3.2 Application 2: Updates committed as

soon as they are computed

Application 2, which was chosen to create problems

with the non-coherent cache architectures we evaluated,

can be conceptually viewed as an advancing wavefront

of computation in a DAG; the data value for each vertex

is computed from the updated values of its predecessor

vertices. The pseudocode for application 2 is as follows.

repeat until all vertices are updated:

for each vertex v with valid predecessors:

v.data∗ = kernel (v.neigh∗.data∗)

Note that for application 2, the newdata fields in the

record definition are not used and the neigh fields can

be interpreted as predecessor pointers.

4 Stream Cache Architectures

The four stream cache architectures that were evaluated

are illustrated in figure 1, along with the correspond-

ing bandwidth and storage hierarchies. This section de-

scribes the specific choices that were made for each ar-

chitecture.

4.1 Architecture 1: No stream cache (base-

line)

Architecture 1 is essentially the currently proposed SSS

architecture without the stream cache. Its relevant spec-

ifications are as follows.

• 16 clusters.

• A single 256 kword SRF divided into 16 banks.

• 2 AG/ROB pairs, each of which can independantly

support up to 4 words per cycle between the mem-

ory system and the SRF for both strided and in-

dexed memory addressing.

• 8 DRAM banks with a combined sustained through-

put of 1 word per cycle (random access) and up to

2 words per cycle (sequential). In our simulator we

have an ‘amortized’ memory model in which we as-

sume a constant sustained bandwidth, regardless of

June 6, 2002

4.2 Architecture 2: Memory system stream cache 3

Local register files

SRF

Local DRAMs

Network

Local register files

SRF

Local DRAMs

Network

Cache

SRF

Local DRAMs

Network

Cache

Arithmetic Units Arithmetic Units Arithmetic Units

1 w/c

1 w/c

32 w/c

256 w/c

1 w/c

8 w/c

1 w/c

32 w/c

8 w/c

Architecture 1 Architecture 2 Architecture 3

32 w/c

256 w/c 256 w/c

1 w/c1 w/c

Local register files Local register files

SRF

Local DRAMs

Network

Cache

Arithmetic Units

1 w/c

8 w/c

Architecture 4

32 w/c

256 w/c

1 w/c

Memory
System

Clusters

Figure 1: Bandwidth and Storage Hierarchies

whether the access is random or sequential. As the

large majority of memory references in our applica-

tions are substantially random this approximation

is adequate.

• A flat network between nodes with a sustained

throughput of 1 word per cycle.

4.2 Architecture 2: Memory system stream

cache

Architecture 2 extends architecture 1 by placing a cache

in the memory system between the local DRAM and

network interface and the SRF. The specifications of the

memory-side cache are as follows.

• The cache is explicitly controlled by the software:

prefetches, loads, invalidates, and flushes must all

June 6, 2002

4.3 Architecture 3: Cluster stream cache 4

be initiated by stream instructions. Load and store

instructions contain a parameter which specifies

whether the data should go through the cache or

directly to memory.

• The cache allows data to be marked as both read-

only and read-write. Read-write data is handled

with a write-back policy, and there is no hardware

coherence support; the software must be aware of

this limitation and act accordingly.

• The stream cache is able to cache both local and re-

mote addresses. If multiple nodes are flushing their

cache and try to update the same memory location,

then the final value after all updates have completed

is non-deterministic.

• The cache has 8 banks and supports a maximum

throughput of 8 words per cycle. In the presence

of bank conflicts, however, the throughput may de-

crease.

• The cache is S-way set associative, with S varying

between 1, 2, 4, and 8 in our experiments, and has

1 word per line.

• The cache doesn’t handle ‘second misses’ gracefully;

if a request misses in the cache it is sent to memory

to be satisfied, and if another request for the same

address arrives while the first is still being handled,

the second request is also sent to memory.

We did simulate a slightly more advanced scheme,

in which the second request is stored in the cache

until the first miss completes, at which time both

requests are satisfied, changing the problem to that

of ‘third miss’. The performance improvement us-

ing this, however, was quite small due to the fact

that even though the second miss was being caught,

the several subsequent requests for the same address

would all still go to memory.

4.3 Architecture 3: Cluster stream cache

Architecture 3 extends architecture 1 by giving the 16

clusters access to a single memory cache, as illustrated

in figure 2. The specifications of the cluster-side cache

(size, policy, etc.) are substantially the same as for the

memory-side cache used in architecture 2; the following

is a description of how the cache is used by the clusters.

• The cache is explicitly controlled by the software,

with loads originating from the kernel program

and prefetches and invalidates originating from the

stream program.

• Each time the SIMD kernel program executing on

the clusters issues a load instruction a row of the re-

quest FIFO is written with each cluster’s requested

address. This FIFO is drained by the cluster cache

at a rate of up to 8 words per cycle, enabling the

clusters to have an issue rate of at most one load

instruction every 2 cycles.

• Each cycle the cache drains some of the requests

at the front of the FIFO and checks its tags for

June 6, 2002

4.3 Architecture 3: Cluster stream cache 5

Requests FIFO

- 2 ported
- 16 words wide
- P rows deep

Memory

(8 banks)

Requests Buffer

- 2 ported
- arbitration between 2
 input sources
- 8 words wide
- 1 col. per cache bank

Reorder Buffer

- 16 register files (columns)
- each register file has:
 - 2 x 64-bit ports
 - 1 x 2-bit port
- Q rows deep

Head

Tail

Stall
Logic

From Clusters To ClustersTo Clusters

8 x 2-1 MUXs

8-8
Xbar

Cache
(8 banks)

8-8
Xbar

Figure 2: Cluster Cache Architecture

hits and misses; all misses are sent to memory. By

maintaining a small number of pending requests it

can reduce the number of bank conflicts. Each cy-

cle, the cache writes up to 8 words to the reorder

buffer. Each word written is either the data result-

ing from a cache hit, or a marker indicating that the

June 6, 2002

4.4 Architecture 4: Memory-side cache with direct cluster access 6

cache missed and the memory is fetching the data.

• When a word of data is returned by the memory

system it is inserted into the appropriate location

in the reorder buffer.

• The front row of 16 words in the reorder buffer is

popped at most every second cycle and copied back

to the clusters.

• From the perspective of the clusters, which op-

erate in a statically scheduled SIMD fashion, the

cache must provide a constant latency, regardless

of whether it hit or missed. This is done by en-

suring that words stay in the reorder buffer for the

appropriate amount of time before they get to the

front and are popped; effectively, the number of

rows of the reorder buffer is the fixed latency that

the clusters expect. In the event that the front row

of the reorder buffer contains an ‘unready’ marker,

the clusters are stalled until the data returns from

memory and is placed in the reorder buffer, pro-

viding the appearance to the kernel program of a

constant latency.

• The stall logic handles the cases in which the con-

stant latency appearence may be broken, such as

lots of bank conflicts in the cache effectively caus-

ing the rate at which the reorder buffer is filled to

decrease, and requests for memory addresses not

having returned yet.

• The cache supports a predicated load feature to

handle the SIMD nature of the architecture. When-

ever the kernel program loads from the cache, all

16 clusters issue an address, even if they don’t re-

ally want one. The address requests sent to the

cache from the clusters can be flagged as ‘invalid’,

in which case the requests effectively ‘hit’, and an

undefined value is returned to that cluster when the

result of the load is sent.

In our experiments, we varied the length of the reorder

buffer between the two extremes, which are, at the min-

imum, a length corresponding to the actual cache hit la-

tency, and, at the maximum, long enough to completely

hide the expected worst-case memory latency (not in-

cluding the infrequent higher latencies resulting from the

unbounded and unpredictable network), ensuring that

the clusters need (almost) never stall. The tradeoff is

between having a small hit latency but high miss cost

(due to stalling), in the case of a short ROB, and a high

hit latency but smaller miss cost in the case of a long

ROB. An additional advantage of the long ROB is that

many memory requests resulting from cache misses can

be outstanding at the same time, hiding the miss latency

by amortizing it over many misses.

4.4 Architecture 4: Memory-side cache with

direct cluster access

Architecture 4 is a hybrid of architectures 2 and 3; it

has a memory-side cache, as in architecture 2, yet allows

the clusters to issue loads and stores directly to memory

June 6, 2002

5.3 Cluster Memory Access Without the Cluster Cache 7

through the cache, as in architecture 3.

5 Hardware Costs

5.1 Memory-Side Cache

The baseline architecture already contains a complete

crossbar between the memory interface and the banked

DRAMS; if the memory-side cache is placed behind that

crossbar it essentially gets it for free. Given this, the

cost of the memory-side cache is the data storage, the

tag storage (at 1 tag per data word, since each line is

just 1 word), and the necessary cache logic and internal

buffering. In the layout, the banks of the cache can line

up with the memory and SRF banks.

5.2 Cluster-Side Cache

The cluster-side cache is basically the same cache model

as the memory-side cache, with 4 additional costs, which

are as follows.

• 2 complete 8x8 crossbars, one at each side of the

cache, to switch the requests and responses across

the cache banks, and 16 2-to-1 multiplexers to

switch from the 16 clusters issuing 16 requests every

2 cycles to the 8-banked cache processing up to 8

requests each cycle.

• A large reorder buffer to store the data to be sent

back to the clusters. This is implemented as 16 reg-

ister files, one per cluster. Each register file contains

2 64-bit wide ports, for reading and writing a word

each cycle, and a third 1-bit wide port for reading

the valid bit from each ROB entry to use in the stall

logic. There are common ‘head’ and ‘tail’ indices

across the 16 register files. It is known that the ad-

dress issued to the 1-bit wide port will always be 1

less than the address issued to read from the ‘head’

index; this information could possibly be used to

implelement the third 1-bit port more cheaply.

• A requests FIFO to feed the cache with the clus-

ter requests. This is implemented as 16 2-ported

register files.

• 8 new buses between the cluster cache’s 8 banks and

the memories 8 banks.

5.3 Cluster Memory Access Without the

Cluster Cache

The cost of this is just the same reorder buffer needed

for the cluster cache and an address generator of width

16, the 8 buses, and some stall logic.

6 Coding the Applications for Each

Architecture

6.1 Application 1

To implement application 1 we chose the maximum

strip size which wouldn’t overflow the SRF and software

pipelined the strips to overlap memory accesses with ker-

nel computation. The implementations for architectures

June 6, 2002

6.1 Application 1 8

Two concatenated
streams in the SRF: the
“numneigh” word from
each record, and the

pointers in each record

Preprocessing
kernel: output

(conditionally) the non-null
pointers to neighbours’

data

Pointers to the
data words in
neighbouring

vertices

N x (M + 1) words
indexed

N x A x D words
indexed

Data from
neighbouring

vertices

Application
kernel

New data for
each vertex in

the strip

N x D
words

indexed

Application
kernel

New data for
each vertex in

the strip

N x D words
indexed

N x A x D words
random

Application implementation using the
SRF to stage data

Data from the
records in the

strip

N x D words
indexed

n
u

m
n

e
ig

h strea
m

Two concatenated
streams in the SRF: the
“numneigh” word from
each record, and the

pointers in each record

N x (M + 1) words
indexed

Data from the
records in the

strip

N x D words
indexed

Application implementation using the
kernel to issue memory requests

Key:

N: Number of vertices in each strip
D: Number of words of data in each record
M : Maximum degree of any vertex
A: Average vertex degree for the given dataset

Figure 3: Implementing a Strip of an Irregular Stream Application

1 and 2 (no cache and memory system cache, respec-

tively) are the same, but the implementation on archi-

tectures 3 and 4 (clusters issue loads and stores) is quite

different, as is illustrated in figure 3. In this diagram, the

left side of each flowchart specifies the number of words

loaded from and stored to memory, and the right side

June 6, 2002

6.2 Application 2 9

illustrates the data stored in the SRF (rectangles) and

kernels operating on that data (circles). The memory

accesses in the grey box may exhibit temporal locality,

but the non-coloured memory references do not; the use

of a cache will not improve their performance any. There

are no dependencies between strips in application 1, so

the complete application simply becomes repeating the

process in this diagram for all strips of input vertices in

each node.

Note that the amount of preprocessing work required

on architectures 3 and 4 is much less than on the memory

system cache architecture, as the repeated indexed loads

to traverse the input graph structure and read the data

words from neighbouring vertices are not needed. One

secondary benefit deriving from this is that SRF space is

not wasted by storing either replicated data or excessive

null pointers; each of these inefficiences is present in the

implementation on the architectures without a cluster

cache.

6.2 Application 2

Application 2 contains update-dependencies between

vertices, and the vertices need to be processed in a cer-

tain order. In the most inefficent implementation, in

which the vertices are stored in a random order in mem-

ory, the entire graph could be traversed over and over

again, each time looking for vertices whose predecessors

have become ready. To be able to traverse the DAG in

a single pass it needs to be topologically sorted, ensur-

ing that all predecessors of a vertex are processed before

the vertex is. This can be done either by storing the

data in a top-sorted manner in memory or by ‘sorting

by reference’, in which the index streams basically con-

tain a level of indirection through a table. In this project

we’ve assumed, for simplicity, that the data is stored top-

sorted in memory; this allows us to avoid simulating a

streaming version of top-sort, which is beyond the scope

of this project.

Consider first the single node situation without a

cache, in which a strip of contiguous vertices is loaded

into the SRF and processed by the clusters. For each

vertex (record) processed, it is known that all of its pre-

decessors are located before it in the ordering of vertices,

but it is not known how far before. Specifically, the pre-

decessors of a vertex could be located before it in the cur-

rent strip in the SRF, and worse, could be processed by

another cluster in parallel with the vertex. Handling this

problem in a SIMD architecture is difficult and amounts

to serialising the processing of the strip; thus, to sup-

port application 2 in an Imagine-like architecture, it is

necessary to ensure that all predecessors of a vertex are

located before it in the total ordering of the vertices, and

also that all vertices in a strip have all their predeces-

sors in earlier strips (i.e.) that there are no intra-strip

neighbours. In the worst case, in which the DAG is a

linked list, each strip will be of length 1, but that can’t

be helped, as there is no parallelism to exploit.

Extend the situation to now include multiple nodes

without caches. The same requirement as in the single

node case holds, in that all vertices in a single strip must

June 6, 2002

7 The Simulator 10

depend only on vertices in previous strips, but an addi-

tional danger is that vertices could depend on vertices

in other nodes. To guarantee that at the time a vertex

is processed in one node all of its predecessors in other

nodes are ready the nodes must synchronize with each

other using barriers, conceptually traversing the DAG

one ‘level’ at a time as illustrated in figure 4 for an ex-

ample DAG and 2 nodes. All nodes process the vertices

within the current level in parallel, using multiple strips

if the number of vertices is too large for one strip, and

then they barrier synchronize before beginning the next

level. For optimal load balancing between nodes, each

node should be assigned an equal size section of each

level.

0

1

2

3

4

5

6

7

8

9

10

11

14

15

16

17

18

19

20

21

22

12

13

Level 0 Level 1 Level 2 Level 3

Node 0

Node 1

Figure 4: Application 2 Top-Sorted DAG

Lastly, consider adding a cache to the multi-node case.

The order of traversing the DAG which is safe for the

multi-node no-cache case is still safe, provided that at

each barrier the elements just computed are flushed out

to memory. For this application a write-through cache

would be most useful, and to enable the write-back cache

we are using to act somewhat like a write-through cache

we simulated a ‘flush-no-invalidate’ operation in addi-

tion to the standard ‘flush’ operation, in which all dirty

entries are copied to memory but not marked as invalid

in the cache.

Once this ordering of strips and barriers is defined,

implementing each strip essentially becomes the same

problem as in application 1, for which the process of

loading and operating on each strip is illustrated in fig-

ure 3.

7 The Simulator

We implemented a ‘cycle-by-cycle performace simula-

tor’; it is aware of the latencies, throughputs, and re-

source bottlenecks in the architecture, and simulates the

performance of that architecture on a given application

(which is coded in a ‘macrocode’ the simulator under-

stands). It is not a functional simulator, however, as

it doesn’t actually simulate the computations, just the

time they take and the resources they need.

The underlying mechanism in the simiulator is the

use of infinite-length priority queues sorted by timestep

value; each block, such as the SRF, the memory, etc.,

contains various queues which it receives messages on

June 6, 2002

8 Results 11

and services in a specific manner to simulate throughput

and resource constraints. Requests from one block to

another for memory reads and writes are simulated as

messages pushed on the queue for the destination block.

The latency part of the model comes from the timestep

value contained within each message; a message may not

be serviced until at least the timestep it contains.

The stream controller part of the simulator is able to

track dependencies between instructions and issue them

out of order, and has an issue window of instructions

it can concurrently execute, provided that the resources

they need to run are available.

By instantiating classes repeatedly we can perform

multi-node simulations; each node contains a network

interface class which handles the sending and recieving

of messages (requests) over the network. The network

model we implemented is completely flat, and models

network congestion by allowing the queue of requests

received over the network in each node to grow without

bound if the rate of received messages is greater than

the rate of serviced messages.

The kernel program and clusters are simulated by pa-

rameterizing the number of cycles of pipelined computa-

tion the kernel performs, and, in the case of the cluster

cache architecture, allowing the kernel program to make

requests for the needed addresses (which are real ad-

dresses, not fake parameters) to the cluster cache which

will forward them to the memory system on a miss. The

requests made by each cluster are determined from the

datasets we generate, as they would be in the real hard-

ware.

The simulator has an element of randomness, which

tends to produce a small amount of noise in the results

obtained. This can be observed as small fluctuations in

the result graphs presented in this report.

The cache models are the most detailed part of the

simulator; they attempt to accurately model real caches,

and are configurable with respect to the policies they

support.

8 Results

Figures 5 and 6 contain a series of 12 graphs, the same

6 for each of the 2 applications studied. For each graph,

the following baseline parameters were used, and a single

parameter was varied.

• SRF size = 256 kwords and cache size = 32 kwords

(data).

• Input datasets: average degree (A) = 32, number

of words of data per record (D) = 8, ROB length

= 128 rows, number of nodes = 1, and number of

vertices = 16,384.

• Peak cache bandwidth = 8 w/cycle, peak memory

bandwidth = 1 w/cycle, and peak network band-

width = 1 w/cycle.

The one exception, which used 2,048 vertices per node

as a baseline instead of 16,384, was the increasing num-

ber of nodes test, due to the fact that with both a

June 6, 2002

8 Results 12

Variation of speedup with K (app1)

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2000 4000 6000 8000 10000 12000

K (cycles)

S
p

ee
d

u
p

1 2 3 4

Variation of speedup with K (app2)

0

0.5

1

1.5

2

2.5

0 2000 4000 6000 8000 10000 12000

K (cycles)

S
p

ee
d

u
p

1 2 3 4

(a1) (a2)

Variation of speedup with D (app1)

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10 12

D (per record)

S
p

ee
d

u
p

1 2 3 4

Variation of speedup with D (app2)

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12

D (per record)

S
p

ee
d

u
p

1 2 3 4

(b1) (b2)

Variation of speedup with avg degree (app1)

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25 30 35

avg deg

S
p

ee
d

u
p

1 2 3 4

Variation of speedup with avg degree (app2)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 5 10 15 20 25 30 35

avg deg

S
p

ee
d

u
p

1 2 3 4

(c1) (c2)

Figure 5: Results.

June 6, 2002

8 Results 13

Variation of speedup with vertices on 1 node (app1)

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

vertices

S
p

ee
d

u
p

1 2 3 4

Variation of speedup with vertices on 1 node (app2)

0

0.5

1

1.5

2

2.5

3

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

vertices

S
p

ee
d

u
p

1 2 3 4

(a1) (a2)

Variation of speedup with ROB length (app1)

0

0.5

1

1.5

2

2.5

3

0 100 200 300 400 500 600

ROB length

S
p

ee
d

u
p

1 3 4

Variation of speedup with ROB length (app2)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 100 200 300 400 500 600

ROB length

S
p

ee
d

u
p

1 3 4

(b1) (b2)

Variation of speedup with num nodes (app1)

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10 12 14 16 18

nodes

S
p

ee
d

u
p

1 2 3 4

Variation of speedup with num nodes (app2)

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6 7 8 9

nodes

S
p

ee
d

u
p

1 2 3 4

(c1) (c2)

Figure 6: Results (continued).

June 6, 2002

9 Analysis of Results 14

large dataset and a large number of nodes, our simu-

lator needed more memory than the available servers

(dim-sum and tree) could provide, and would have taken

many hours to complete a single simulation.

9 Analysis of Results

Figures 5(a1) and 5(a2) are graphs of the speedup vs. K,

the number of cycles of pipelined arithemetic per record,

for each application. Several points can be made about

these graphs:

• As K gets larger, the speedup of all 3 cache archi-

tectures approaches 1, due to the application tran-

sitioning from being memory-bandwidth-limited to

computation-limited. (i.e.) A cache is only useful

when the number of ops per record performed by a

kernel is ‘small’. In architecture 2, in which indexed

loads to the SRF are used for all memory reads, the

speedup decreases monotonically.

• The speedup curves for the cluster-load architec-

tures (3 and 4) initially rise as K increases. This is

due to the ‘spacing out’ of requests from the clus-

ters; when K is small, due to kernel software pipelin-

ing the clusters will be issuing requests at or close to

the peak bandwidth of the cache, and the spacing

out of requests helps performance by:

– Reducing the effective rate at which the clus-

ters issue requests to a sustained rate that

the cache can handle; due to bank conflicts,

the cache can usually not sustain its full peak

bandwidth. When the FIFO containing re-

quests from the clusters fills, the clusters are

back-pressured by stalling them.

– Improving the ‘second miss’ factor, as, by spac-

ing out requests for the same address, there is

a greater chance that later requests will be a

hit.

• The relative performance of arch. 2 against the clus-

ter load architectures was greater for app. 1 than

app.2. This is due to the barrier synchronization

required every small number of strips in app. 2

breaking software pipelining. Apps on arch. 2 soft-

ware pipeline at the strip level, while apps on arch.

3 and 4 software pipeline at the record level, a much

finer granularity, decreasing the pipeline prime and

drain overhead they suffer relative to arch. 2.

Figures 6(b1) and 6(b2) are graphs of the speedup vs.

the length of the cluster ROB, as a number of 16-wide

rows. Note that:

• As the ROB length increases, the performance of

architectures 3 and 4 for both apps become the

same, indicating that the (more expensive) dedi-

cated cluster cache architecture is only better than

the (cheaper) shared memory cache architecture

when the ROB is ‘small’.

Other observations which can be made from the

graphs include the following.

June 6, 2002

• Increasing the average degree of the graph increases

speedup (figures 5(c1) and 5(c2)), as both the

amount of temporal locality and also the fraction

of the total number of memory references in the ap-

pliations which are susceptible to caching increase.

• Increasing the number of words of data per record

increases speedup (figures 5(b1) and 5(b2)), once

again by increasing the fraction of the total number

of memory requests which exhibit temporal locality.

• Relatively constant speedup was seen with increas-

ing number of vertices per node, even well after the

total cacheable part of the dataset exceeded the

cache size at 2000 vertices. This implies that the

datasets used had a high degree of locality in their

connections.

10 Conclusions

There are 2 conclusions which can be drawn fom the

work prosented in this report.

• Using a stream cache to capture temporal locality

can be effective if the dataset contains enough lo-

cality; speedups of over 3.5 were observed in our

experiments.

• The 2 styles of architecture evaluated (SRF-load

and cluster-load) showed relatively similar perfor-

mance in the applications studied, and each have

their different pros and cons. One factor which was

neglected, however, was that running multiple ap-

plication kernels on a single strip may have helped

the performance of the SRF-load architecture more

than the cluster-load architecture.

11 Discussion - Limitations on

Speedup

Several limitations on the speedup attainable using a

cache were observed in this project.

• Amdahl’s Law: only some of the memory loads ex-

hibit temporal locality, and the preprocessing over-

head isn’t helped by the cache.

• Bank conflicts can reduce the effective cache band-

width.

• In the case of application 2, the speedup was hurt

a lot by the synchronization barrier breaking the

strip-level software pipelining.

12 Future Work

• Study cache performance on real apps in ISIM.

• Investigate using add-and-store with a cache.

• If an application can be found which would ben-

efit from some level of partial coherence, such as

memory locking, explore how much this would help

and how expensive different partial coherence mech-

anisms would be.

15

