Multi-Node Programming – Longest IP Prefix Matching: A Stream Application using Multiple Imagines in Different Configurations



Henry Fu, Harn Hua Ng, Yeow Cheng Ong Stanford University

> EE482C Project Presentation Thursday, May 30, 2002

Multi-Node Programming – Longest IP Prefix Matching

# Outline

- Motivation
- Goals
- Application: IP routing
- Setup
- Test methods, data, metric
- Results
- Challenges
- Conclusions

# Motivation

- Develop and evaluate methods to efficiently map stream programs over multiple stream processing nodes
- Examine ways to partition data and/or instructions across the nodes
- Develop methods to coordinate multiple nodes and to communicate data
- Evaluate methods for load balancing

# Goals

- Multi-node programming using multiple Imagines
  - Provide more computing power and higher performance
    - Requires more memory bandwidth and higher communication overhead

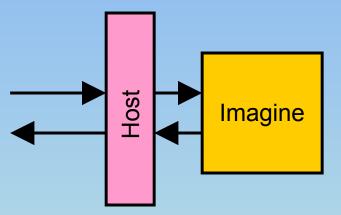
Investigate different configurations that give best performance with least overhead

# Introduction

- IP packet routing commonly used and can be mapped as a stream application
  - Each packet is independent
    - Data Level Parallelism (DLP)
  - Multiple flows of packets in router can be mapped as different streams of data
    - Thread Level Parallelism (TLP)
  - Same instruction can be distributed to multiple
    ALUs to perform multiple operations in parallel
    - Instruction Level parallelism (ILP)

### Overview

- IP Routing
  - Extract IP address information from each packet, compared against a routing table, and re-routed to appropriate nexthop address
  - IP Packet traffic modeled as data stream
  - After each lookup, each processor passes longest match result, along with current packet to a neighboring processor of another node to continue longest prefix matching

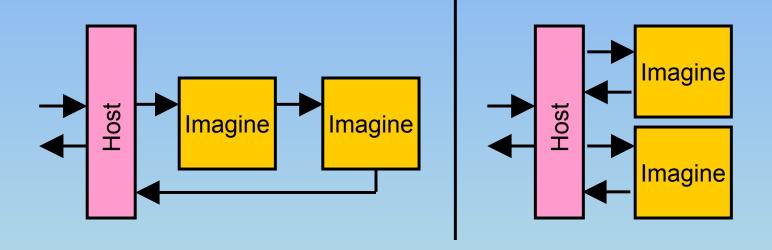

#### Algorithm used for IP address matching

#### – Within a Kernel:

- Distribute routing table entries to all clusters
  - i.e. mask, destination address, nexthop
- Find mask length for each routing table entries
- Find match
  - (Packet address) AND (mask) XOR (destination address)
- Keep track of length of longest prefix match, and corresponding next hop

# Setup

- Baseline case
  - Use 1 host processor and 1 Imagine
  - 1 parallel data lane, 1 pipeline stage
  - All results normalized according to baseline case results

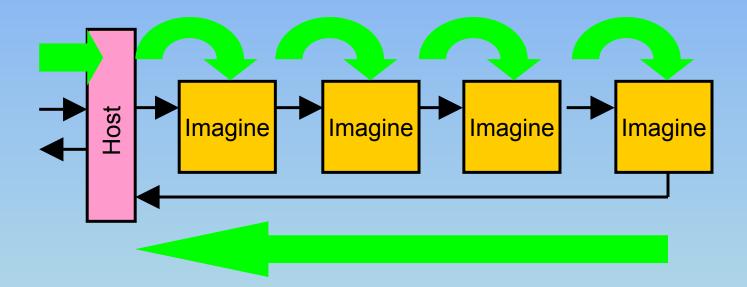



Multi-Node Programming – Longest IP Prefix Matching

H. Fu, H. H. Ng, Y. C. Ong

# Setup (More)

- 2 Imagines
  - Use 1 host processor and 2 Imagines
  - 1 parallel data lane, 2 pipeline stages
  - 2 parallel data lanes, 1 pipeline stage

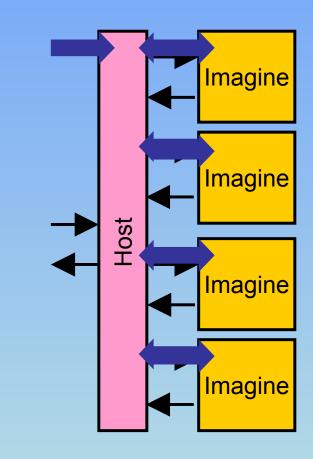



Multi-Node Programming – Longest IP Prefix Matching

H. Fu, H. H. Ng, Y. C. Ong

# Setup (More)


- 4 Imagines
  - Use 1 host processor and 4 Imagines
  - 1 parallel data lane, 4 pipeline stages




Multi-Node Programming – Longest IP Prefix Matching

# Setup (More)

- 4 Imagines
  - 2 parallel data lanes,2 pipeline stages
  - 4 Parallel data lanes,1 pipeline stage





Multi-Node Programming – Longest IP Prefix Matching

# Configurations

- Pipelined configuration: total # of routing table entries distributed evenly to all Imagine processors in each pipeline stage
  - Static load balancing
- Parallel configuration: total # of destination addresses distributed evenly to all data streams
   Static load balancing
  - Static load balancing

### **Test Methods**

- Program written in StreamC and KernelC
- Profiling used to estimate cycle count in each kernel and total execution time

- Number of Imagines used: 1, 2, and 4
- Number of test packets used: 8, 32, 1024
- Number of routing entries used: 8, 32, 1024

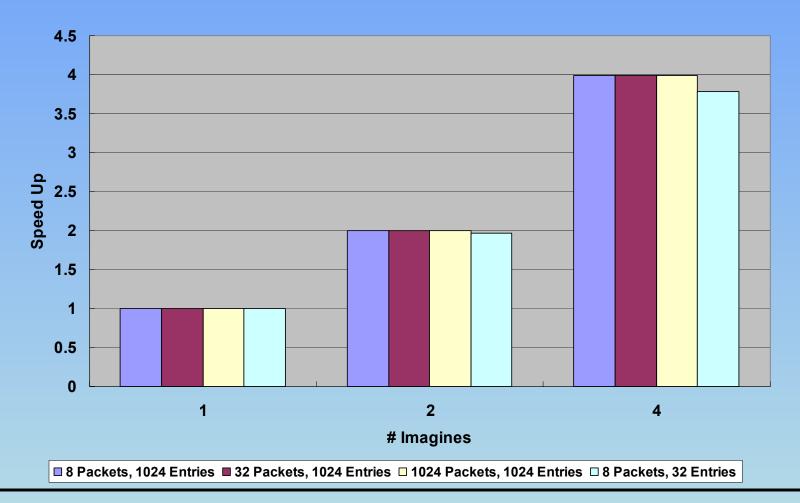
### Test Data

- Randomly-generated destination addresses
- Routing table entries captured from major router in ISP
  - ner-routes.bbnplanet.net
  - 119, 967 entries captured
  - Subset of total entries randomly picked for experiment
  - C program to generate correct results and to verify output of stream program

# **Test Metric**

- Execution time of single Stream Processor configuration vs. that of multi-node configuration
  - 1, 2, 4 Imagines arranged in pipelined configuration
    vs. 1 Imagine configuration
  - 1, 2, 4 Imagines arranged in parallel configuration
    vs. 1 Imagine configuration
- Communication overhead examined in > 1 Imagine configuration

# **Test Results**


- Pipelined Configuration
  - Almost ideal speed up for large data set
  - Significant overhead for small data set

| Pipelined |           |            |             |           |           |           |          |            |
|-----------|-----------|------------|-------------|-----------|-----------|-----------|----------|------------|
|           |           |            | Execution 1 | Time      |           |           |          |            |
| # Packets | # Entries | # Imagines | Imagine 0   | Imagine 1 | Imagine 2 | Imagine 3 | Avg/Img  | Speed Up   |
| 8         | 1024      | 1          | 52325       |           |           |           | 52325    | 1          |
|           |           | 2          | 25636       | 26721     |           |           | 26178.5  | 1.99877762 |
|           |           | 4          | 12260       | 13408     | 13408     | 13345     | 13105.25 | 3.99267469 |
| 32        | 1024      | 1          | 209300      |           |           |           | 209300   | 1          |
|           |           | 2          | 102544      | 106884    |           |           | 104714   | 1.99877762 |
|           |           | 4          | 49040       | 53632     | 53632     | 53380     | 52421    | 3.99267469 |
| 1024      | 1024      | 1          | 6697600     |           |           |           | 6697600  | 1          |
|           |           | 2          | 3281408     | 3420288   |           |           | 3350848  | 1.99877762 |
|           |           | 4          | 1569280     | 1716224   | 1716224   | 1708160   | 1677472  | 3.99267469 |
| 8         | 32        | 1          | 1669        |           |           |           | 1669     | 1          |
|           |           | 2          | 833         | 868       |           |           | 850.5    | 1.96237507 |
|           |           | 4          | 415         | 450       | 450       | 450       | 441.25   | 3.78243626 |

Multi-Node Programming – Longest IP Prefix Matching

# Test Results (More)

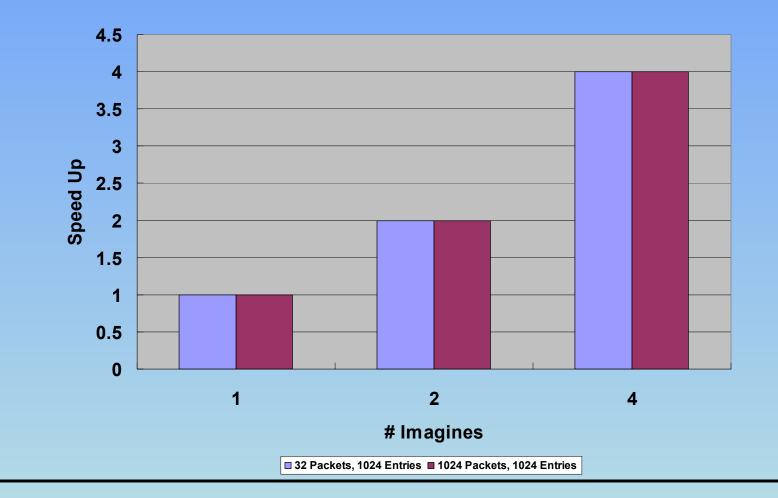
**Pipelined - Speed Up Vs. # Imagines** 



Multi-Node Programming – Longest IP Prefix Matching

# Test Results (More)

- Parallel Configuration
  - Almost ideal speed up for large data set
  - Slight overhead for large data set


| Parallel  |           |            |                |           |           |           |            |          |
|-----------|-----------|------------|----------------|-----------|-----------|-----------|------------|----------|
|           |           |            | Execution Time |           |           |           |            |          |
| # Packets | # Entries | # Imagines | Imagine 0      | Imagine 1 | Imagine 2 | Imagine 3 | Avg/Img    | Speed Up |
| 32        | 1024      | 1          | 209311         |           |           |           | 209311     | 1        |
|           |           | 2          | 104650         | 104661    |           |           | 104655.5   | 2        |
|           |           | 4          | 52325          | 52325     | 52325     | 52336     | 52327.75   | 4        |
| 1024      | 1024      | 1          | 6697701        |           |           |           | 6697701    | 1        |
|           |           | 2          | 3348800        | 3348901   |           |           | 3348850.5  | 2        |
|           |           | 4          | 1674400        | 1674400   | 1674400   | 1674501   | 1674425.25 | 4        |

Multi-Node Programming – Longest IP Prefix Matching

H. Fu, H. H. Ng, Y. C. Ong

# Test Results (More)

Parallel - Speed Up Vs. # Imagines



Multi-Node Programming – Longest IP Prefix Matching

# Challenges

- Limitation on # of imagines (max. 4) when 1 host used
- Complexity in multiple hosts simulation
   Out of order execution
- Profiling has restrictions
- Problems with communication and synchronization among multiple imagines

# Conclusions

- Speedup increases with number of processing nodes
  - Communication and synchronization overheads
- Better to distribute data and instructions across multiple nodes to increase parallelism
- Additional configurations to be tested

#### **Questions & Comments**

Multi-Node Programming – Longest IP Prefix Matching

H. Fu, H. H. Ng, Y. C. Ong