

Stanford University

EE482C
Advanced Computer Architecture &

Organization

Project Report

Multi-Node Programming

June 6, 2002

Henry FU

Harn Hua NG

Yeow Cheng ONG

EE482C Spring 2002 Project Report

 - 1 -

1. Project goals

In this project, methods for mapping stream programs over multiple stream-processing nodes are

developed and evaluated. Specifically, these methods are used to partition data and/or instructions

across the nodes, communicate data/state information to coordinate the processors and perform load

balancing.

1.1 Application

The example chosen for this project is that of IP Packet Routing – Longest Prefix Address Matching.

It is a common application used in routers in the Internet to assign next-hop addresses in packets'

paths to their final destination.

IP
Packet:

Destination
Address ⇒ Routing

Table Entry:
Network
Address

Network
Mask

Next-Hop
Address

1.2 Findings

IP Address Longest Prefix Matching is a suitable applications for illustrating multi-node

Stream processing as packet traffic lends itself to Data-Level, Thread-Level and

Instruction-Level parallelism. For pipelined configurations, the speedup increases linearly

with the number of processors, and for parallel configurations, there are synchronization and

communication overheads which cause the rate of increase of speedup to decrease as the

number of processors increases.

Figure 1a. Mask and Match to Find Corresponding Next-Hop Address

EE482C Spring 2002 Project Report

 - 2 -

2. Implementation

2.1 Metric

The execution time of a single Stream Processor configuration is compared against that of a multi-node

configuration. Speedup is plotted against the number of Imagines in the configuration to see the effects

on execution time.

2.2 Setup

To implement the IP Routing application, the development environment provided by the Imagine

Stream Processor Project at Stanford University is used. The code is written in StreamC and KernelC

and simulated in the IDebug simulator. A performance measurement feature known as Profiling is

used to record the execution times in cycle counts.

Consider the baseline case in Figure 2a, where only 1 host process and 1 Imagine are used.

In this configuration, there is only one parallel lane and one pipeline stage. All routing table entries

and all data packets are given to a single Imagine processing node. All multi-node performance results

are normalized to that of this baseline case.

Both parallel and pipelined configurations are tested for each subsequent configuration.

Imagine

H
ost

Figure 2a. Baseline configuration

EE482C Spring 2002 Project Report

 - 3 -

Other multi-node pipelined version includes two Imagines with two pipeline stages, as shown

in Figure 2b, where the routing table is split into two, given to each Imagine.

Both Imagines process the destination addresses in the packet traffic before the correct

next-hop address is computed.

The case with four Imagines and four pipeline stages is shown in Figure 2c below, where the

routing table entries are split into four parts.

The parallel versions of a multi-node configuration includes two Imagines with two parallel

lanes (Figure 2d), and four Imagines with four parallel lanes as in Figure 2e, where data

traffic is split into two and four parts respectively. In the parallel version, output data from all

Imagine

H
ost Imagine

Figure 2b. 2 Imagines, 2 pipeline stages

Imagine

H
ost Imagine Imagine Imagine

Figure 2c. 4 Imagines, 4 pipeline stages

EE482C Spring 2002 Project Report

 - 4 -

the Imagines are sent to the last Imagine to be combined before producing the final output.

Our code was divided into the following modules:

• (StreamC) Main function in Host Processor

• (KernelC) Address Matching kernel

• (KernelC) Kernel to combine outputs from other Imagines in a parallel configuration

2.2 Test Data

Routing table entries are captured from a major router in an ISP. The targeted ISP is known as

ner-routes.bbnplanet.net and 119,967 routing table entries are obtained. A subset of these entries is

randomly selected as test data. The corresponding result files are generated using a program written in

C for easy comparison with the output produced by the Imagine application.

H
ost

Imagine

Imagine

Figure 2d. 2 Imagines, 2 parallel lanes

H
ost

Imagine

Imagine

Imagine

Imagine

Figure 2e. 4 Imagines, 4 parallel lanes

EE482C Spring 2002 Project Report

 - 5 -

2.3 Longest Matching Prefix Algorithm

In the kernel, a batch of eight data packets is given to the eight clusters present in one Imagine

processor, i.e. one packet per cluster.

A software kernel loops through all the routing table entries, and logically left-shifts the mask portion

until it becomes zero, to find the maximum mask length. After that, routing table entries in batches of

eight are communicated to all eight clusters, along with their respective mask lengths. Each cluster

has all the eight routing table entries now. The long prefix match is then found by using the following

logic:

Match = (pkt destination addr AND mask) XOR each routing table entry's dest. addr

If the resultant match is zero, then the mask length is compared to the latest longest match mask

length for that particular destination address, and if this new mask length is greater, its corresponding

routing table entry's next-hop replaces that of the previous next-hop address.

At the end of the routing table stream, a stream of length eight, containing longest mask length and

next hop addresses for the eight data packets is output. This stream is then passed to the next node in

line as input. The very last Imagine in the line therefore contains the correct next hop addresses for the

eight data packets.

Figure 2f. Mask and Match Logic

EE482C Spring 2002 Project Report

 - 6 -

3.1 Results & Findings

Pipelined Algorithm

Execution Time

Packets # Entries # Imagines Imagine 0 Imagine 1 Imagine 2 Imagine 3 Avg/Img Speed Up

1024 1024 1 6697600 6697600 1

 2 3281408 3420288 3350848 1.99877762

 4 1569280 1716224 1716224 1708160 1677472 3.99267469

32 1024 1 209300 209300 1

 2 102544 106884 104714 1.99877762

 4 49040 53632 53632 53380 52421 3.99267469

8 1024 1 52325 52325 1

 2 25636 26721 26178.5 1.99877762

 4 12260 13408 13408 13345 13105.25 3.99267469

8 512 1 25636 25636 1

 2 12260 13408 12834 1.99750662

 4 5950 6342 6720 6720 6433 3.98507695

8 64 1 3040 3040 1

 2 1592 1480 1536 1.97916667

 4 812 812 770 742 784 3.87755102

8 32 1 1669 1669 1

 2 833 868 850.5 1.96237507

 4 415 450 450 450 441.25 3.78243626

Table 3a. Cycle counts from Pipelined implementation

The above table (Table 3a) shows that improvements in performance are reaped from using

multiple nodes in a pipelined configuration. The speedup is almost proportional to the

number of Imagines utilized.

Note that when four Imagines are used, the execution time for each Imagines differs. This is

because the cycle count is actually data dependent. When finding the mask length, the mask

needs to be logically left-shifted by one bit per cycle until it becomes zero. Hence, the

EE482C Spring 2002 Project Report

 - 7 -

amount of time taken to find the mask length varies.

When the number of data packets is held constant, the speedup is not as good as when a small

routing table (< 1024 entries) is used (see figure 3b). This demonstrates the short stream

effects. The communication overhead is significant when such a small data set is used.

However, with the number of routing table entries held constant, the speedup is still the same

with a varying number of data packets (see Figure 3a). This is due to the fact that data

packets are always processed in batches of eight. Hence, with sixteen packets the kernel

needs to be called twice for each Imagine. The amount of overhead is proportional to the

eight packets. The speedup ratio is hence the same.

Pipelined - Speed Up Vs. # Imagines
(Fixed # table entries with varying # pkts)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 4

Imagines

Sp
ee

d
U

p

8 Packets, 1024 Entries 32 Packets, 1024 Entries 1024 Packets, 1024 Entries

Figure 3a. Pipelined - Speedup vs. # Imagines

EE482C Spring 2002 Project Report

 - 8 -

Pipelined - Speedup vs. # Imagines
(Fixed # pkts with varying # table entries)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 4

Imagines

Sp
ee

du
p

8 pkts, 1024 Entries 8 pkts, 512 Entries 8 pkts, 64 Entries 8 pkts, 32 Entries

Pipelined Algorithm (Large Data Set)

Execution Time

Packets # Entries # Imagines Imagine 0 Imagine 1 Imagine 2 Imagine 3 Avg/Img Speed Up

8 8192 1 415765 415765 1

 2 203037 212760 207898.5 1.99984608

 4 96596 106473 106872 105920 103965.25 3.99907661

32 8192 1 1663060 1663060 1

 2 812148 851040 831594 1.99984608

 4 386384 425892 427488 423680 415861 3.99907661

1024 8192 1 53217920 53217920 1

 2 25988736 27233280 26611008 1.99984608

 4 12364288 13628544 13679616 13557760 13307552 3.99907661

8192 8192 1 425743360 425743360 1

 2 207909888 217866240 212888064 1.99984608

 4 98914304 109028352 109436928 108462080 106460416 3.99907661

Table 3b. Cycle counts from Pipelined implementation (Large Data Set)

The above table (Table 3b) shows that improvements in performance are extracted from using

multiple nodes in a pipelined configuration with large data set. The speedup is almost

Figure 3b. Pipelined – Speedup vs. # Imagines

EE482C Spring 2002 Project Report

 - 9 -

proportional to the number of Imagines utilized and is very close to the result extracted with

regular data set. Therefore, once the data set is relatively large (> 1024 entries), it makes

almost no difference to the speedup (see Figure 3c). The limiting factor is then due to the

number of Imagines used rather than the size of the data set. If we use a large number of

Imagines (> 4 Imagines), we should see noticeable drop off in speedup, because the

communication cost associated with using a large number of Imagines should be quite

significant.

Pipelined - Speedup vs. # Imagines (Large Data Set)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 4
Imagines

Sp
ee

du
p

8 pkts, 8192 Entries 32 pkts, 8192 Entries 1024 pkts, 8192 Entries 8192 pkts, 8192 Entries

Figure 3c. Pipelined – Speedup vs. # Imagines (Large Data Set)

EE482C Spring 2002 Project Report

 - 10 -

Parallel Algorithm

Execution Time

Packets # Entries # Imagines Imagine 0 Imagine 1 Imagine 2 Imagine 3 Avg/Img Speed Up

32 1024 1 209311 209311 1

 2 104650 104661 104655.5 2

 4 52325 52325 52325 52336 52327.75 4

32 64 1 12171 12171 1

 2 6080 6091 6085.5 2

 4 3040 3040 3040 3057 3044.25 3.99802907

32 32 1 6687 6687 1

 2 3338 3349 3343.5 2

 4 1669 1669 1669 1686 1673.25 3.99641416

32 8 1 1811 1811 1

 2 900 911 905.5 2

 4 450 450 450 467 454.25 3.98679141

64 8 1 3611 3611 1

 2 1800 1817 1808.5 1.99668233

 4 900 900 900 929 907.25 3.98015982

1024 8 1 57701 57701 1

 2 28800 28997 28898.5 1.99667803

 4 14400 14400 14400 14789 14497.25 3.98013416

Table 3c. Cycle counts from Parallel implementation

The performance of multi-node using the parallel version is slightly better than the pipelined

version on the average. However, the parallel version is not necessarily better as the

performance also depends on how the data is distributed to the different Imagines. The load

per Imagine is perhaps more balanced, when distributing the data rather than distributing the

routing table. A large portion of this performance is data dependent, and a slight difference in

performance does not tilt the balance in either configuration's favor.

EE482C Spring 2002 Project Report

 - 11 -

Note that the last Imagine always has a larger cycle count than the previous Imagines. This is

because the last Imagine is responsible for combining all the processed data from the other

processors. This is an important step as different Imagines may take varying lengths of time

to complete the masking and address matching.

With a fixed number of packets, the speedup improves as the number of routing table entries

increases (Figure 3d). With a smaller routing table, short stream effects occur whereby, first,

each kernel incur startup costs such as variable initialization for each batch of data, and

second, software-pipelined kernels also incur the cost of priming and draining their

software-pipelined inner loops. With a larger routing table, short stream effects diminish.

With varying data packets but fixed routing table entries, the overhead cost increases as the

data packets increases. More synchronizing is needed, i.e. combining the outputs of each

Imagine takes a longer time with more data packets. Hence, speedup decreases as more data

packets are used (Figure 3e).

EE482C Spring 2002 Project Report

 - 12 -

Parallel - Speed Up Vs. # Imagines
(With fixed # data packets)

0

0.5
1

1.5

2
2.5

3

3.5
4

4.5

1 2 4

Imagines

Sp
ee

d
U

p

32 Packets, 1024 Entries 32 Packets, 64 Entries 32 Packets, 32 Entries 32 Packets, 8 Entries

Parallel - Speed Up Vs. # Imagines
(With fixed # of Routing Entries)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 4

Imagines

Sp
ee

d
U

p

32 Packets, 8 Entries 64 Packets, 8 Entries 1024 Packets, 8 Entries

Figure 3d. Parallel – Speedup vs. # Imagines

Figure 3e. Parallel – Speedup vs. # Imagines

EE482C Spring 2002 Project Report

 - 13 -

Parallel Algorithm (Large Data Set)

Execution Time

Packets # Entries # Imagines Imagine 0 Imagine 1 Imagine 2 Imagine 3 Avg/Img Speed Up

32 8192 1 1663071 1663071 1

 2 831530 831541 831535.5 2

 4 415765 415765 415765 415782 415769.25 3.99998557

1024 8192 1 53218021 53218021 1

 2 26608960 26609157 26609058.5 1.99999639

 4 13304480 13304480 13304480 13304869 13304577.3 3.99997835

8192 8192 1 425744133 425744133 1

 2 212871680 212873221 212872451 1.99999639

 4 106435840 106435840 106435840 106438917 106436609 3.99997835

Table 3d. Cycle counts from Parallel Implementation (Large Data Set)

The above table (Table 3d) shows that improvements in performance are extracted from using

multiple nodes in a parallel configuration with large data set. The speedup is almost

proportional to the number of Imagines utilized and is very close to the result extracted with

regular data set. Similar to the pipelined configuration, once the data set is relatively large (>

1024 Entries), it makes almost no difference to the speedup (see Figure 3f). The limiting

factor is the number of Imagines used rather than the size of the data set, because of the same

reason as found from the simulation of the pipelined configuration with a large data set.

EE482C Spring 2002 Project Report

 - 14 -

Parallel - Speedup vs. # Imagines (Large Data Set)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 4
Imagines

Sp
ee

du
p

32 pkts, 8192 Entries 1024 pkts, 8192 Entries 8192 pkts, 8192 Entries
Figure 3f. Parallel – Speedup vs. # Imagines (Large Data Set)

EE482C Spring 2002 Project Report

 - 15 -

4.1 Conclusion

We found that speedup increases with the number of processing nodes, as it increases parallelism.

Communication and synchronization overheads are present, but the effect on performance is not that

great with a small number of Imagines (4 or less). This is expected as the large part of the application

execution time is spent on finding the longest prefix match, not on the synchronization and this is

even more true with large data sets. With IP packet routing, we are able to exploit data and

instruction parallalism and hence, comunication and synchronization overheads are very much

minimized, resulting in almost perfect speedup with more imagines.

Multi-node programming is an effective way of exploiting the inherent data-level, instruction-level

and thread-level parallelism present in stream processing applications. Depending on the nature and

design of the application, it is possible to reduce the amount of state variable synchronization and

inter-node communication such that the benefits of parallel processing are maximized.

4.2 Challenges

Due to time and resource constraints, we were unable to implement simulations involving > 4

Imagines in multi-node configurations. Some restrictions and implementation criteria dictated by the

development tools made it more complicated to implement inter-Imagine communications and

synchronization. For example, multi-host simulations gave rise to memory access violations, most

likely due to the out-of-order execution of the hosts. As such, we are only able to get one host running

EE482C Spring 2002 Project Report

 - 16 -

at this point in time. One host can only support four Imagines, and hence this limits our testing

configurations. Profiling imposed many restrictions on coding style and since profiling was needed

for performance analysis, we had to modify our code several times in order for profiling to work.

4.3 Future Work

Multi-host simulation is definitely an avenue to explore in order to get more Imagines running.

Specifically, ISim should be used to do multi-host and multi-imagine simulation so that cycle accurate

results can be extracted for large data set running on as many as 16 Imagines processors and 4 hosts.

Also, other applications such as signal processing and graphics rendering should be tested in

multi-node environments to see how speedup varies with the number of Imagines or hosts used.

5. Acknowledgements

Finally, we would like to thank Professor Dally, our TAs Mattan Erez and Abhishek Das for giving us

invaluable advice and help throughout the course of our project, especially when things were not

going smoothly.

