
EE482c Final Project: Stream Programson
Legacy Architectures

Chaiyasit Manovit, Zi-Bin Yang, John Kim and Sanjit Biswas
{ cmanovit, zbyang, jjk12, sbiswas} @stanford.edu}

June6, 2002

1. Summary of project and findings

Thisproject studied the mapping of stream processing onto legacy architectures. Cache

memorieswere treated as SRF, into which datawere loaded by prefetch instruction. By

using cache, wecould conveniently index into theSRF, and also blended theusageof the

SRF with the scratchpad memory. However, we still liked to have dataarranged

sequentially or packed together in the memory to efficiently utilize memory bandwidth

and cache capacity. Such related work wasdone at Utah called Impulse, which wasa

memory controller that doesdatagathering/scattering; but since we would like to limit

thisproject to legacy architectures, wedecided to emulatesuch functionalities in software

by copying selected data into a new datastructure. (Thispiece of code, however, is

referred as Impulse later in the report.) Loading data into the cache with prefetch and the

actual computation were made overlapped by software pipelining, which was manually

scheduled. When the whole stream was too large to fit in the cache, it’s strip-mined.

To apply these techniques, we manually transform the codes, and at the same time try to

extend GCC to do some (mainly prefetch) automatically. We did our experimentswith a

couple of benchmarkson both the RSIM simulator and an actual hardware (Sun

UltraSparc-III). Our experiment showed that all three techniques, namely, prefetching,



Impulse, and strip-mining, were effective (when used properly) for the matrix

multiplication studied in detail in thisproject. Theresult suggested that theL1 cache, not

the L2, should be used as the SRF, although L2 isstill useful for double-buffering and/or

carrying spilled data. However, we also see some limitation on the effectivenessof using

cacheasSRF, mainly becausewelack moreexplicit control on cachecontent and current

implementation of prefetch incursquite abit of overhead.

Table 1. The summary of mapping between legacy architectures and stream processing

Stream Legacy Architecture
SRF/LRF/Scratchpad L1 cache

secondary level SRF (optional) L2 cache
stencil - datagathering/scattering Impulse (SW gather/scatter)

strip-mining Algorithmic techniques, e.g. loop tiling

2. Description of Our Work

2.1 Software Data Prefetching
Stream processorseffectively hide memory latency by keeping all necessary data in a

high bandwidth Stream Register File (SRF), which is referenced by computation kernels,

thuseliminating the need for reactive caches. Although such SRFsdo not exist on legacy

architectures, most contemporary processorsoffer some form of prefetch instruction that

performsa non-blocking load into either the L1 or L2 cache. By utilizing the exposed

memory accesspatterns found in stream programs, thecompiler can prefetch dataprior to

on-demand accesses to avoid costly cache misses penalties. We are able to expose this

regularity by modeling streams asarrays of recordswhich are accessed within loops

using affine indices. This allowsus to use GCC'sexisting induction variable analysis

framework to insert prefetcheswithin loop bodies for future iterations.



2.1.1 Prefetch insertion example

As an example of loop-based prefetching,

consider the code segment (a). This loop

calculates the inner product of two vectors a and b (each element is 1 byte), in a manner

similar to the innermost loop of a matrix multiplication. Using this code, we will examine

the transformations and optimizations required to effectively hide memory latency.

The simple approach to prefetching in

(b) suffers from several problems. First,

we need not prefetch in every iteration

of this loop, since each prefetch actually

bring in multiple, say l, bytes (one cache line) into the cache. Although the extra prefetch

operations are not illegal, they are unnecessary and thus degrade preformance. Assuming

a and b are cache line aligned, prefetching should only be done on every l iteration. One

solution to this problem is to surround the prefetch directive with a if condition that

tests when (i mod l = 0) is true, but this such overhead would likely offset the benefits

of prefetching and therefore should be avoided. A better solution is to unroll the loop.

The code segment given in part (c)

removes most cache misses and

unnecessary prefetches but futher

improvements are possible. Note that

cache misses will occur during the

for (product=0, i=0; i<len; i++)

product += a[i] * b[i]; (a)

for (product=0, i=0; i<len; i++) {

product += a[i] * b[i];

prefetch(&(a[i+l]);

prefetch(&(b[i+l]);
} (b)

for (product=0, i=0; i<len; i+=l) {

product += a[i] * b[i] +

a[i+1]* b[i+1] +

....

prefetch(&(a[i+l]);

prefetch(&(b[i+l]);
} (c)



first iteration of the loop since prefetchesare never issued for the initial iteration. Also,

unnecessary prefetchesin the last iteration accessdatapast theloop index boundary. Both

of the above problemscan be remedied using software pipelining, asshown in (d).

The code in (d) is said to cover all

loop referencesbecause each

reference ispreceded by amatching

prefetch. Note there’s an additional

improvement. The examplesso far

havehad the implicit assumption that

prefetching one iteration ahead is

sufficient to hide the latency of main

memory accesses. However, this is

not necessarily the case. When loops

contain small computational bodies, it maybe necessary to initiate prefetches δ iterations

before the data is referenced. Here, δ is known as the prefetch distance and is expressed

in unitsof loop iterations. Mowry, et. al. represent the computation as: ��

�
��

�=
s

lδ . Where l

is the average memory latency, measured in cycles, and s is the estimated cycle time of

the shortest possible execution path. In (d) δ = 3.

2.1.2 Compiler tranformations

In order to avoid unnecessary prefetches, we implement adatareuse analysisphase

similar to that proposed by Wolf and Lam (please refer to paper for more details, as it's

prefetch(&(a[3*l]));

prefetch(&(b[3*l]));

product += a[0]*b[0]+a[1]*b[1]+....

product = 0;

for (i=l; i<len-l; i+=l) {

product += a[i] * b[i] +

a[i+1]* b[i+1] +

....

prefetch(&(a[i+3*l]);

prefetch(&(b[i+3* l]);
}
product += a[i] * b[i] +

a[i+1]* b[i+1] +

.... (d)



not feasible to describe the specifics here). Since stream accesses are modeled as affine

accesses to array elements, we attempt to identify and act upon three forms of reuse from

within the induction variable framework. In the event of spatial reuse across loops, we

only prefetch when (i mod l = 0). For temporal reuse we prefetch only when i = 0,

and assume the data remains the cache. For group reuse (where multiple references refer

to the same location), we identify and only prefetch the leading reference. Ideally, the

compiler should apply the proper degree of loop unrolling to eliminate prefetch predicate

calculation, but due to implementation issues, we resorted to performing these

transformations by hand. We also estimate the volume of data accessed within a given

loop, in an effort to determine if outer loop iterations can benefit from temporal reuse.

Even when restricted to well-conformed looping structures, the use of explicit prefetch

instructions exacts a performance penalty that must be considered when using software

prefetching. Prefetch instructions add processor overhead not only because they require

extra execution cycles but also because the source addresses must be calculated and

stored in the processor. Ideally, this prefetch address should be retained so that it need not

be recalculated for the matching load instruction. By allocating and retaining register

space for the prefetch address, register pressure will increase, which in turn may result in

additional spill code. The problem is exacerbated when the prefetch distance is greater

than one, since this implies either maintaining delta address register to hold multiple

prefetch addresses, or storing these addresses in memory if the required number of

address registers are not available.



Comparing the transformed loop in part (d) to the original loop, it can be seen that

software prefetching also results in significant code expansion, which in turn may

degrade instruction cache performance. Also, because software prefetching usesno run-

time knowledge, it isunable to detect when aprefetched block hasbeen prematurely

evicted and needs to be refetched (perhapsafter a context switch, which isbeyond the

application'scontrol).

In addition to manually transforming code (next section) to include prefetch, we

implemented thedatareuse analysisphaseand prefetch insertion transformations in GCC

3.1's loop analysis framework, but were unable to automatically unroll the loops. Asa

result, we observe a large number of unnecessary prefetches, which has led to less

accurate results. If we had more time, we could have debugged the reuse analysisphase.

2.2 Code Transforming and Simulation
The following discussesworkflow using the matrix multiplication asour case study.

2.2.1 Prefetching

We manually inserted prefetch instructions to prefetch each matrix ahead of time and

mixed them with thecomputation code. Wealso used our modified GCC to automatically

insert prefetch according to our data flow analysis.

2.2.2 Data gathering (Impulse)

Doing matrix multiplication, the second matrix, multiplier, will be read one column at a

time. One cacheline (32 bytes) contains8 words, each of which belongs to adifferent

column. When we read in one column of the matrix, we will also have data for the next 7



columns in the cache. However, if the cache is too small, we will have to reread these

cachelines back and waste a lot of bandwidth, cyclesand energy. To solve thisproblem,

the second matrix is first transposed and the matrix multiplication problem ischanged

into computing inner products.

2.2.3 Strip-Mining and Matrix Multiplication

Strip-mining isaalgorithmic-level technique that aims to reduce memory bandwidth

requirement. Basically, the idea is to fit a “strip” of data in a fast storage such ascache,

and apply as many operationsaspossible before fetching the next strip. When done

correctly, thiseliminatesunnecessary spilling to the memory, thus improving overall

performance. It’salso quite important for prefetching to be effective.

The application of strip-mining in large matrix multiplication hasbeen studied

extensively, and isprobably more popularly referred to as “ tiling” or “subblocking.” We

will not give detailed descriptionsof how it workshere. We did implement the strip-

mined version of matrix multiplication.

We further observe that most modern microprocessorshave ahierarchy of caches (at

least L1 and L2). So we see an opportunity to experiment with hierarchical strip-mining:

we can, in theory, fetch into L1 the strip of data that’sneeded for current computations,

while we use L2 to buffer both the dataof the current strip that cannot immediately fit

into L1, and the next strip of data. So in the case of matrix multiplication, we extended

our strip-mined code to further dividing the sub-matrices into even smaller matrices,

adjusting the sizesso they fit into L1. And while we are doing multiplicationson these



matrices, we tried using the prefetch instructions to fetch the next group of matrices into

L2 cache, overlapping computation with memory operations. As with other prefetch

efforts, the inner loops is unrolled to avoid excessive prefetches. And due to the fact that

the second matrix are traversed multiple times in the computation stage, we replicated the

code in the first loop of computation, and did prefetches only in that one loop so we

would not issue redundant prefetches.

3. Experiement and Results

3.1 Experiment Environment
We used the RSIM simulator to simulate a legacy processor. RSIM is a user-level

execution-driven simulator that models the processor pipeline and memory hierarchy in

detail. The configuration that was used is illustrated in the Table 2 below. Most of the

configuration we used were the default values except processor speed, which allowed us

to model the memory having a more realistic latency of 72 cycles. The 16kB and 64kB

size of the L1 and L2 cache sizes are kept small to reduce the run time. From RSIM

simulations, several statistics were

gathered. The main data of concern

was the run time from RSIM. Other

important statistics included how

much of the run time was actually

spent doing "useful work" versus

time spent waiting for functional

units or waiting for a memory

operation.

Table 2. RSIM Configuration

5 cyclesL2 latency

72 cyclesMemory Latency (for L2 miss)

64KBL2 cache size

1 cycleL1 latency

16KBL1 cache size

32 bytesCache line size

32Memory queue size

64Instruction window size

4Issue Width

1.2GHzProcessor Speed

1# of processor



Besides the RSIM, we also tried to an actual hardware, UltraSparcIII, to verify the results

we were observing in RSIM on a real system.

3.2 Results of Matrix Multiplication

Figure 1. Matrix Multiplication Results on RSIM (a) rowXcolumn (b) rowXrow

With the modified gcc which included the prefetch option, we were able to compile our

simple test case and measured the performance. With the matrix organized in a column-

major format, there was clearly no benefit from inserting the prefetch as shown in

Figure1 (a). There was actually a loss in the performance because of the overhead

involved with prefetch. However, if the data structure is more suitable for prefetch (i.e.

arranged in a row-major format), the benefits of prefetching are shown in the run time

(Figure 2(b)). Even though we see around 30% increase in performance, a good portion

of the prefetches were still identified as "useless" prefetches, which means the compiler

can probably be further improved. By analyzing the data further, the biggest

improvement in the run time comes from the fact that smaller amount of time is spent

0

50000

100000

150000

200000

250000

300000

32 64 128 256

matrix size

ru
n

ti
m

e

no prefetch

prefetch

0.E+00

1.E+06

2.E+06

3.E+06

4.E+06

5.E+06

6.E+06

7.E+06

8.E+06

9.E+06

32 64 128 256

no prefetch

prefetch



waiting for a memory. As aresult, greater proportion of theoverall runtime isspent doing

actual work.

Figure 2. (a) Performance Analysis on RSIM of Matrix Multiplication (b) Matrix Multiplication
performance on UltraSparcIII

However, from agiven column-major matrix, the benefit of aprefetch can be obtained if

we transform the datastructure into arow-major datastructure, which could’ve been

done by the Impulse memory controller transparently. In this “ legacy” architecture, we

emulated the Impulse memory controller in software. For the test case that we were

working with, the transposing of the matrix was all that was required to achieve the

appropriate data manipulation.

The row-row matrix multiplication wasassumed to be the maximum performance gain

that we could obtain if we start with arow-column matrix multiplication. After applying

the impulse transformation and including prefetch, theperformancewasvery similiar to a

row-row matrix multiplication. However, for larger datasize (much greater than the

0

5

10

15

20

25

30

35

40

r*
c

r*
r

im
pulse

r*
r*

pre
f

im
p/p

re
f

sm
/ur pre

f

optimizations

ru
n

ti
m

e

Mem stall

FU stall

Busy

0

5

10

15

20

25

30

35

40

45

64 128 256 512 1024

Matrix Size

r*r

impulse

r*c



cache size), the performance of thismanipulation will not be better than arow-row

matrix multiplication. In the smaller datasize, thematrix transposing allowed usto bring

in the dataearlier (almost acting like aprefetch itself) and since L2 isawrite-back cache,

it would result in a fewer L2 cache miss. By applying other software trickssuch as loop

unrolling and strip mining, further enhancement in performance wasobserved.

Table 3. Average run time (sec) of code with different techniques applied on Elaine (UltraSparc-III+)

Version without strip-mining with strip-mining
manual3 gcc4 manual3 gcc4

rowxcol, no prefetch 30.4 11.5 11.5
rowxcol, prefetch A 30.0 29.9 11.6
rowxcol, prefetch B 30.4 11.5
rowxcol, prefetch A&B 30.0 11.6
rowxrow, no Impulse, no prefetch 13.9 10.8
rowxrow, Impulse, no prefetch 13.9 11.0
rowxrow, Impulse, prefetch Impulse 13.9 10.9 11.0
rowxrow, Impulse, prefetch A 13.8 11.0
rowxrow, Impulse, prefetch B 12.5 11.2
rowxrow, Impulse, prefetch Impulse&A&B 13.0 13.3 11.6

1. Each configuration isrun several timesto compensatefor thevariation
2. 1024x1024 matrix, manually unroll loops8 timeswhereappropriate
3. Prefetch A[ai] (current row of matrix a), prefetch B[bi+32] (the4th cachelineahead)
4. Welook at theassembly codegenerated by gcc with our softwareprefetch extension to seewhat typeof
prefetches(Impulse, A, or B) areadded and placethemeasured run-timein thecorresponding row.

Table 3 shows that prefetch doeshelp to improve performance on real machine. Several

thingscan be noted. One is that, for row*row with Impulse without strip-mining,

prefetching only matrix B gives the best result; the reason is that for each row of matrix

A, the entire matrix B is “streamed” into thecache, so B gets themost benefit of prefetch.

Another interesting observation is that when all Impulse, A, and B are prefetched, the

performance isactually worse than just prefetch B. Our guess is that too many prefetches

will conflict with each other and causessome improper eviction, aproblem we further

discuss in Section 4.2. The result also shows that our extended GCC can insert helpful



prefetch instructionsand improve the performance in most case, although it may not

produce optimal results.

The strip-mined version of matrix multiplication showed substantial performance gain

versus the naïve version (last bar in Figure 2(a), with prefetch). The hierarchically strip-

mined version, however, did not. In fact, though it ran on real hardware, it crashed RSIM

so we were not able to gather meaningful statisticson it. Some explanation for no

performance improvement are suggested in section 4.2

To summarize, with all techniques applied appropriately, we saw10x speedup on RSIM,

but a little tricky to show that on the actual hardware due to its large 8MB L2 cache and

hence requiring avery large test dataand long run time to get to the point where we can

see 10x speedup.

4. Discussion

It required aconsiderable amount of effort to transform anormal code into awell-behave

stream program. Loop tiling needed to be done carefully, taken the L1 cache size (and

possibly its replacement policy) into account. In correct transformation will result in

wrong computation and/or poor performance. Prefetching may seem easier, but it is

difficult to verify the "correctness" of prefetching code, because it only affects the

performance and not the computing result, which could be difficult to observe and

reason.



4.1 Rewriting code with Stream in Mind
Generally speaking, we should have used astricter definition of stream application and

explicitly written our code as such. We could then haveprovided thecompiler with more

knowledge of the memory accessand avoided “short stream effects” . For example, with

the matrix multiplication code written as is, GCC will treat a32x32 matrix as32 32-

element streams, whereaswe could have just used asingle 1024-element stream and had

fewer late prefetches.

4.2 Prefetch Problems
Given our experience of using the prefetch instruction, we see some problemswith both

its current implementation and itspotential use to transform cache into SRF. As

mentioned earlier, one problem is that it incurs too much overhead both in termsof

addresscalculationsand number of instructions. This isespecially true when we just

want to fetch a large block of sequential data, which really need just one prefetch

instruction that specifies the starting addressand length. Another problem is that,

although we seem to have control on what’s in the cache with prefetch, we have little

control over what’sevicted from the cache when it gets full. Asmost cache are set-

associative with LRU replacement policy, datamay be evicted incorrectly. For example,

in the case of matrix multiplication, we would like to keep the rowsof the first matrix in

the cache while we stream in the second matrix, but aswe do that, the first elementsof

the rowsbecomes more LRU, so they may get evicted when the columnsof the second

matrix fill up the cache. So LRU isnot necessarily apolicy we want, and we definitely

can use more explicit control over the cache, such asways to “pin” certain data in it or

fetch data into acertain region of the cache (cache coloring technique?).



The solution to these problems seems to be a prefetch instruction that can fetch a large

block of sequential data; it would be even more ideal if we can specify strides. This has

the additional advantage not having to interleave computation instruction with prefetch

instructions, making the code cleaner. Of course this makes explicit control on cache

content even more critical: the large block of memory being prefetched will evict large

part of the cache, which will require hints from the programmer to work well. Another

solution may be to have some on-chip SRAM memories (scratch pad). For example, Intel

XScale architecture allows programmers to pin down cachelines and conceptually make

them become SRAM.

5. Future work

In hindsight, we should have spent less time developing such a rigorous data reuse

analysis phase, and focused our efforts on cache partitioning and stream scheduling. If we

can ensure data will not be evicted from the cache, we can prefetch it much farther in

advance rather than just in time, as we have done. However, implementing such

scheduling would require significant changes within GCC (not as simple as hacking the

induction framework).

Also, since we claim to use the L1 as an SRF, it would be worth checking how much of

the L1 we are able to utilize as a holding store. Ideally, we should be able to pack the

entire cache with prefetched streams. And while we are on the topic of cache, it may be

worthwhile to investigate how we can gain more explicit control of the cache (new

instructions, etc) and otherwise to make it behave more like the SRF.



We haven't investigated the mapping of producer-consumer locality onto legacy

architectures. Our benchmark was just one kernel working alone; so instead of that, we

would use some more typical stream applications. Also, webelieve DLPcan bemapped

to SIMD/MMX/VIS instructions, which wasnot studied.


