EE482c Fina Project: Stream Programs on
Legacy Architectures

Chaiyasit Manovit, Zi-Bin Y ang, John Kim and Sanjit Biswas
{ cmanovit, zbyang, jjk12, sbiswas} @stanford.edu}

June 6, 2002

1. Summary of project and findings

This project studied the mapping of stream processing onto legacy architectures. Cache
memories were treated as SRF, into which datawere |loaded by prefetch instruction. By
using cache, we could conveniently index into the SRF, and a so blended the usage of the
SRF with the scratchpad memory. However, we still liked to have data arranged
sequentially or packed together in the memory to efficiently utilize memory bandwidth
and cache capacity. Such related work was done at Utah called Impulse, which was a
memory controller that does data gathering/scattering; but since we would like to limit
this project to legacy architectures, we decided to emulate such functionalities in software
by copying selected datainto a new data structure. (This piece of code, however, is
referred as Impulse later in the report.) Loading datainto the cache with prefetch and the
actual computation were made overlapped by software pipelining, which was manually

scheduled. When the whole stream was too large to fit in the cache, it’s strip-mined.

To apply these techniques, we manually transform the codes, and at the same timetry to
extend GCC to do some (mainly prefetch) automatically. We did our experiments with a
couple of benchmarks on both the RSIM simulator and an actua hardware (Sun

UltraSparc-111). Our experiment showed that all three techniques, namely, prefetching,

Impulse, and strip-mining, were effective (when used properly) for the matrix

multiplication studied in detail in thisproject. The result suggested that the L1 cache, not
the L2, should be used as the SRF, although L 2 is still useful for double-buffering and/or
carrying spilled data. However, we aso see some limitation on the effectiveness of using
cache as SRF, mainly because we lack more explicit control on cache content and current

implementation of prefetch incurs quite a bit of overhead.

Table 1. Thesummary of mapping between legacy architecturesand stream processing

Stream L egacy Architecture
SRF/LRF/Scratchpad L1 cache
secondary level SRF (optional) L2 cache
stencil - data gathering/scattering Impulse (SW gather/scatter)
strip-mining Algorithmic techniques, e.g. loop tiling

2. Description of Our Work

2.1 Software Data Prefetching
Stream processors effectively hide memory latency by keeping all necessary datain a

high bandwidth Stream Register File (SRF), which is referenced by computation kernels,
thus eliminating the need for reactive caches. Although such SRFsdo not exist on legacy
architectures, most contemporary processors offer some form of prefetch instruction that
performs a non-blocking load into either the L1 or L2 cache. By utilizing the exposed
memory access patterns found in stream programs, the compiler can prefetch data prior to
on-demand accesses to avoid costly cache misses penalties. We are able to expose this
regularity by modeling streams as arrays of records which are accessed within loops
using affine indices. This alows us to use GCC's existing induction variable analysis

framework to insert prefetches within loop bodies for future iterations.

2.1.1 Prefetch insertion example

As an example of loop-based prefetching,

consider the code segment (a). Thisloop

for (product=0, i=0; i<len;

product += a[i] * b[i];

i ++)

(a)

calculates the inner product of two vectorsa and b (each element is 1 byte), in amanner

similar to the innermost loop of amatrix multiplication. Using this code, we will examine

the transformations and optimizations required to effectively hide memory latency.

The simple approach to prefetching in
(b) suffers from several problems. First,
we need not prefetch in every iteration

of thisloop, since each prefetch actually

for (product=0, i=0; i<len; i++) {
product += a[i] * b[i];
prefetch(& (a[i+l]);
prefetch(& (b[i+l]);
(b)

}

bring in multiple, say |, bytes (one cache line) into the cache. Although the extra prefetch

operations are not illegal, they are unnecessary and thus degrade preformance. Assuming

a and b are cache line aligned, prefetching should only be done on every | iteration. One

solution to this problemisto surround the pr ef et ch directive with ai f condition that

testswhen (i nod | = 0) istrue, but thissuch overhead would likely offset the benefits

of prefetching and therefore should be avoided. A better solution isto unroll the loop.

The code segment given in part (c)
removes most cache misses and
unnecessary prefetches but futher

improvements are possible. Note that

cache misses will occur during the }

for (product =0,

i=0; i<len; i+=l) {
product += a[i] * b[i]

a[i+1]* b[i+1] +

+

prefetch(& (a[i+l]);
prefetch(& (b[i+l]);
(c)

first iteration of the loop since prefetches are never issued for the initial iteration. Also,
unnecessary prefetchesin the last iteration access data past the loop index boundary. Both

of the above problems can be remedied using software pipelining, as shown in (d).

The codein (d) issaid to cover all
prefetch(&a[3*1]));

loop references because each prefetch(&b[3*1]));

product += a[0]*b[0]+a[1]*b[1]+....

reference is preceded by amatching | o oquct = o

prefetch. Note there's an additional for (i=li i<len-li i+=l) {
product += a[i] * b[i] +
improvement. The examples so far a[i+1]* b[i+1] +

have had the implicit assumption that orefetch(& (a[i+3*1])

prefetching oneiteration ahead is prefetch(& (b[i+3*1]);
sufficient to hide the latency of main | product += a[i] * b[i] +
a[i+1]* b[i+1] +
memory accesses. However, thisis o (d)

not necessarily the case. When loops
contain small computational bodies, it maybe necessary to initiate prefetches Jiterations

before the datais referenced. Here, dis known as the prefetch distance and is expressed

, , , , : I
in units of loop iterations. Mowry, et. al. represent the computation as. 0 = [—W . Wherel
S

Is the average memory latency, measured in cycles, and sisthe estimated cycle time of

the shortest possible execution path. In (d) o= 3.

2.1.2 Compiler tranformations

In order to avoid unnecessary prefetches, we implement a data reuse analysis phase

similar to that proposed by Wolf and Lam (please refer to paper for more details, asit's

not feasible to describe the specifics here). Since stream accesses are model ed as affine
accesses to array elements, we attempt to identify and act upon three forms of reuse from
within the induction variable framework. In the event of spatial reuse across loops, we
only prefetchwhen (i nod | = 0). Fortemporal reuse we prefetch only wheni = 0,
and assume the data remains the cache. For group reuse (where multiple references refer
to the same location), we identify and only prefetch the leading reference. Idedlly, the
compiler should apply the proper degree of loop unrolling to eliminate prefetch predicate
calculation, but due to implementation issues, we resorted to performing these
transformations by hand. We a so estimate the volume of data accessed within agiven

loop, in an effort to determine if outer loop iterations can benefit from temporal reuse.

Even when restricted to well-conformed |ooping structures, the use of explicit pr ef et ch
instructions exacts a performance penalty that must be considered when using software
prefetching. Pref et ch instructions add processor overhead not only because they require
extra execution cycles but also because the source addresses must be calculated and
stored in the processor. Ideally, this prefetch address should be retained so that it need not
be recalculated for the matching | oad instruction. By allocating and retaining register
space for the prefetch address, register pressure will increase, which in turn may result in
additional spill code. The problem is exacerbated when the prefetch distance is greater
than one, since thisimplies either maintaining delta address register to hold multiple
prefetch addresses, or storing these addresses in memory if the required number of

address registers are not available.

Comparing the transformed loop in part (d) to the original loop, it can be seen that
software prefetching also results in significant code expansion, which in turn may
degrade instruction cache performance. Also, because software prefetching uses no run-
time knowledge, it is unable to detect when a prefetched block has been prematurely
evicted and needs to be refetched (perhaps after a context switch, which is beyond the

application's control).

In addition to manually transforming code (next section) to include prefetch, we
implemented the data reuse analysis phase and prefetch insertion transformations in GCC
3.1'sloop analysis framework, but were unable to automatically unroll the loops. Asa
result, we observe a large number of unnecessary prefetches, which hasled to less

accurate results. If we had more time, we could have debugged the reuse anaysis phase.

2.2 Code Transforming and Simulation
The following discusses workflow using the matrix multiplication as our case study.

2.2.1 Prefetching

We manually inserted prefetch instructions to prefetch each matrix ahead of time and
mixed them with the computation code. We a so used our modified GCC to automatically

insert prefetch according to our data flow analysis.

2.2.2 Data gathering (Impulse)

Doing matrix multiplication, the second matrix, multiplier, will be read one column at a
time. One cacheline (32 bytes) contains 8 words, each of which belongs to adifferent

column. When we read in one column of the matrix, we will aso have datafor the next 7

columns in the cache. However, if the cache is too small, we will have to reread these
cachelines back and waste alot of bandwidth, cycles and energy. To solve this problem,
the second matrix isfirst transposed and the matrix multiplication problem is changed

into computing inner products.

2.2.3 Strip-Mining and Matrix Multiplication

Strip-mining is aalgorithmic-level technique that aims to reduce memory bandwidth
requirement. Basicaly, theideaisto fit a“strip” of datain afast storage such as cache,
and apply as many operations as possi ble before fetching the next strip. When done
correctly, this eliminates unnecessary spilling to the memory, thus improving overall

performance. It's aso quite important for prefetching to be effective.

The application of strip-mining in large matrix multiplication has been studied
extensively, and is probably more popularly referred to as “tiling” or “subblocking.” We
will not give detailed descriptions of how it works here. We did implement the strip-

mined version of matrix multiplication.

We further observe that most modern microprocessors have a hierarchy of caches (at
least L1 and L2). So we see an opportunity to experiment with hierarchical strip-mining:
we can, in theory, fetch into L1 the strip of datathat’s needed for current computations,
while we use L2 to buffer both the data of the current strip that cannot immediately fit
into L1, and the next strip of data. So in the case of matrix multiplication, we extended
our strip-mined code to further dividing the sub-matrices into even smaller matrices,

adjusting the sizes so they fit into L1. And while we are doing multiplications on these

matrices, we tried using the prefetch instructions to fetch the next group of matrices into
L 2 cache, overlapping computation with memory operations. Aswith other prefetch
efforts, the inner loopsis unrolled to avoid excessive prefetches. And due to the fact that
the second matrix are traversed multiple times in the computation stage, we replicated the
code in the first loop of computation, and did prefetches only in that one loop so we

would not issue redundant prefetches.

3. Experiement and Results

3.1 Experiment Environment
We used the RSIM simulator to simulate alegacy processor. RSIM is auser-level

execution-driven simulator that models the processor pipeline and memory hierarchy in
detail. The configuration that was used isillustrated in the Table 2 below. Most of the
configuration we used were the default values except processor speed, which alowed us
to model the memory having amore realistic latency of 72 cycles. The 16kB and 64kB
size of the L1 and L2 cache sizes are kept small to reduce the run time. From RSIM

simulations, severa statistics were Table2. RSIM Configuration

. #of 1
gathered. The main data of concern o proee
Processor Speed 1.2GHz
was therun time from RSIM. Other | isiewidth 4
. L. . Ingtruction window size 64
important stati stics included how :
Memory queuesze 32
much of the run time was actually Cachelinesze 32 bytes
L1 cachedze 16KB
spent doing "useful work" versus L1 latency 1oycle
. .. . L2 cachedze 64KB
time spent waiting for functional
L2 latency 5cycles
units or waiting for amemory Memory Latency (for L2 misy 72 cydes

operation.

Besidesthe RSIM, we also tried to an actua hardware, UltraSparclll, to verify the results

we were observing in RSIM on areal system.

3.2 Results of Matrix Multiplication

9.E+06
8.E+06 A
7.E+06 A
6.E+06 A

5.E+06 - —&—no prefetch
4.E+06 4 prefetch

run time

3.E+06 4
2.E+06 A
1.E+06 A
0.E+00

L 4

32 64 128 256

300000 +

250000 A

200000 A

150000 A

100000 A

50000 A

—&—no prefetch
prefetch

o

32 64 128 256

matrix size

Figurel. Matrix M ultiplication Resultson RSIM (a) rowXcolumn (b) rowXrow

With the modified gcc which included the prefetch option, we were able to compile our

simple test case and measured the performance. With the matrix organized in a column-

magjor format, there was clearly no benefit from inserting the prefetch as shown in

Figurel (a). There was actually aloss in the performance because of the overhead

involved with prefetch. However, if the data structure is more suitable for prefetch (i.e.

arranged in arow-major format), the benefits of prefetching are shown in the run time

(Figure 2(b)). Even though we see around 30% increase in performance, agood portion

of the prefetches were still identified as "useless” prefetches, which means the compiler

can probably be further improved. By analyzing the data further, the biggest

improvement in the run time comes from the fact that smaller amount of time is spent

waiting for a memory. As aresult, greater proportion of the overall runtimeis spent doing

actual work.
40
35 1 OMem sall
30 - HFU stall
B Busy
25 1
Q
E
= 201
2
15 4
10 4
5 -
0 -
< & QQ\& *Q«é \Q&é 8
\é\ {(_g \é\Q é(\\\)

optimizations

45

40

35 4

30 1

25

20 +

15

10 A

——rr

——impulse

[} =

-

128 256 512 1024

Matrix Size

Figure2. (a) Performance Analysison RSIM of Matrix M ultiplication (b) Matrix Multiplication
performanceon UltraSparcli|

However, from a given column-major matrix, the benefit of a prefetch can be obtained if

we transform the data structure into arow-magjor data structure, which could’ ve been

done by the Impulse memory controller transparently. In this“legacy” architecture, we

emulated the Impulse memory controller in software. For the test case that we were

working with, the transposing of the matrix was all that was required to achieve the

appropriate data manipulation.

The row-row matrix multiplication was assumed to be the maximum performance gain

that we could obtain if we start with arow-column matrix multiplication. After applying

the impulse transformation and including prefetch, the performance was very similiar to a

row-row matrix multiplication. However, for larger data size (much greater than the

cache size), the performance of this manipulation will not be better than a row-row
matrix multiplication. In the smaller data size, the matrix transposing allowed usto bring
in the data earlier (almost acting like a prefetch itself) and since L2 is awrite-back cache,
it would result in afewer L2 cache miss. By applying other software tricks such as loop

unrolling and strip mining, further enhancement in performance was observed.

Table 3. Averagerun time (sec) of code with different techniques applied on Elaine (UltraSparc-111+)

\Version without strip-mining | with strip-mining
manual® | gcc® | manual® | gec’

rowxcol, no prefetch 30.4 115 11.5

rowxcol, prefetch A 30.0 29.9 11.6

rowxcol, prefetch B 30.4 115

rowxcol, prefetch A&B 30.0 11.6

rowxrow, no Impulse, no prefetch 13.9 10.8

rowxrow, Impulse, no prefetch 13.9 11.0

rowxrow, Impulse, prefetch Impulse 13.9 10.9 11.0

rowxrow, Impulse, prefetch A 13.8 11.0

rowxrow, Impulse, prefetch B 12.5 11.2

rowxrow, Impulse, prefetch Impulse&A&B 13.0 13.3 11.6

1. Each configuration isrun several timesto compensate for the variation

2.1024x1024 matrix, manually unroll loops 8 times where appropriate

3. Prefetch A[ai] (current row of matrix @), prefetch B[bi+32] (the 4th cacheline ahead)

4. Welook at the assembly code generated by gcc with our software prefetch extension to see what type of
prefetches (Impulse, A, or B) are added and place the measured run-time in the corresponding row.

Table 3 shows that prefetch does help to improve performance on real machine. Severa
things can be noted. One is that, for row*row with Impulse without strip-mining,
prefetching only matrix B gives the best result; the reason is that for each row of matrix
A, the entire matrix B is*“streamed” into the cache, so B gets the most benefit of prefetch.
Another interesting observation isthat when all Impulse, A, and B are prefetched, the
performance is actually worse than just prefetch B. Our guessis that too many prefetches
will conflict with each other and causes some improper eviction, a problem we further

discussin Section 4.2. The result also shows that our extended GCC can insert hel pful

prefetch instructions and improve the performance in most case, although it may not

produce optimal results.

The strip-mined version of matrix multiplication showed substantial performance gain
versus the naive version (last bar in Figure 2(a), with prefetch). The hierarchically strip-
mined version, however, did not. In fact, though it ran on real hardware, it crashed RSIM
so we were not able to gather meaningful statisticson it. Some explanation for no

performance improvement are suggested in section 4.2

To summarize, with all techniques applied appropriately, we saw10x speedup on RSIM,
but alittle tricky to show that on the actual hardware due to its large 8MB L 2 cache and
hence requiring avery large test dataand long run time to get to the point where we can

see 10x speedup.

4. Discussion

It required a considerable amount of effort to transform anormal code into awell-behave
stream program. Loop tiling needed to be done carefully, taken the L1 cache size (and
possibly its replacement policy) into account. In correct transformation will result in
wrong computation and/or poor performance. Prefetching may seem easier, but itis
difficult to verify the "correctness” of prefetching code, because it only affects the
performance and not the computing result, which could be difficult to observe and

reason.

4.1 Rewriting code with Stream in Mind
Generally speaking, we should have used a stricter definition of stream application and

explicitly written our code as such. We could then have provided the compiler with more
knowledge of the memory access and avoided “short stream effects’. For example, with
the matrix multiplication code written asis, GCC will treat a 32x32 matrix as 32 32-
element streams, whereas we could have just used a single 1024-element stream and had

fewer |ate prefetches.

4.2 Prefetch Problems
Given our experience of using the prefetch instruction, we see some problems with both

its current implementation and its potential use to transform cache into SRF. As
mentioned earlier, one problemisthat it incurs too much overhead both in terms of
address calculations and number of instructions. Thisis especially true when we just
want to fetch alarge block of sequentia data, which really need just one prefetch
instruction that specifies the starting address and length. Another problem is that,
although we seem to have control on what’sin the cache with prefetch, we have little
control over what’s evicted from the cache when it gets full. As most cache are set-
associative with LRU replacement policy, datamay be evicted incorrectly. For example,
in the case of matrix multiplication, we would like to keep the rows of the first matrix in
the cache while we stream in the second matrix, but as we do that, the first elements of
the rows becomes more L RU, so they may get evicted when the columns of the second
matrix fill up the cache. So LRU is not necessarily apolicy we want, and we definitely
can use more explicit control over the cache, such aswaysto “pin” certain datain it or

fetch datainto acertain region of the cache (cache coloring technique?).

The solution to these problems seems to be a prefetch instruction that can fetch alarge
block of sequential data; it would be even more ideal if we can specify strides. This has
the additional advantage not having to interleave computation instruction with prefetch
instructions, making the code cleaner. Of course this makes explicit control on cache
content even more critical: the large block of memory being prefetched will evict large
part of the cache, which will require hints from the programmer to work well. Another
solution may be to have some on-chip SRAM memories (scratch pad). For example, Intel
X Scale architecture allows programmers to pin down cachelines and conceptually make

them become SRAM.

5. Future work

In hindsight, we should have spent less time developing such arigorous data reuse
analysis phase, and focused our efforts on cache partitioning and stream scheduling. If we
can ensure datawill not be evicted from the cache, we can prefetch it much farther in
advance rather than just in time, as we have done. However, implementing such
scheduling would require significant changes within GCC (not as simple as hacking the

induction framework).

Also, since we claim to use the L1 as an SRF, it would be worth checking how much of
the L1 we are able to utilize as a holding store. Ideally, we should be able to pack the
entire cache with prefetched streams. And while we are on the topic of cache, it may be
worthwhile to investigate how we can gain more explicit control of the cache (new

instructions, etc) and otherwise to make it behave more like the SRF.

We haven't investigated the mapping of producer-consumer locality onto legacy
architectures. Our benchmark was just one kernel working alone; so instead of that, we
would use some more typica stream applications. Also, we believe DLP can be mapped

to SIMD/MM X/V IS instructions, which was not studied.

