
EE482C: Advanced Computer Organization Lecture #3
Stream Processor Architecture
Stanford University Thursday, 25th April 2002

Stream Processor - Continued

Lecture #3: Thursday, 11th April 2002
Lecturer: Bill Dally
Scribe: Nuwan Jayasena, Hsiao-Heng Lee, Francois Labonte
Reviewer: Mattan Erez

During this lecture Some questions were answered by Prof. Dally on stream processing
in general and the last two papers reviewed at the last meeting, the imagine general paper
and the polygon rendering paper. Then Prof. Dally completed the presentation of the lecture
notes from lecture 1. At the end, Mattan presented a quick demonstration of the imagine
programming system using the example of comlex number multiplication.

1 Questions and Answer

1.0.1 What happens if some clusters are not fully utilized (i.e. idle)?

We can use conditional streams to balance the load. By adding some small code to check
whether clusters are idle every T time, we can load the next stream records in idle clusters.
This is enabled by conditionnal streams which will be studied later on.

The granularity of this ”cluster checking” is determined by the programmer. The trade-
off here is to spend additional time on checking the clusters to reduce cluster idle time, and
checking too often may increase the overhead. Right now the checking must be done manually
by the programmer, but it would be interesting if the compiler can automatically provide this
functionality.

So the average kernel execution time is approximately ”t3 + floor(t3/t2) * t1” where t1 is
the time to check whether the clusters are idle, t2 is the time between each checking and t3 is
the total execution time of a kernel.

1.0.2 Scaling of process technology: As the technology scales (larger SRF, more ALUs
...), is compiler scheduling becoming harder?

There are 3 axes of scaling:

� Instruction level parallelism (ILP): more ALUs per cluster

� Data level parallelism (DLP): more clusters and larger SRF bandwidth

� Thread level parallelism (TLP): multiple microprocessors

2 EE482C: Lecture #3

T2

T1

T3

C2

C1

C3

C4

Figure 1: Conditional Streams load balancing

1.0.3 How does the SRF scale?

As the number of clusters grows, the SRF BW demand grows linearly.

1.0.4 How can we schedule threads?

Threads are ”self-scheduling” - not statically scheduled.

1.0.5 Do we need to scale the number of inter-cluster connections as we scale the num-
ber of clusters?

No, a study performed by Brucek Khailany (a PhD student in Prof. Dally’s group) has shown
that the number of inter-cluster connections remain constant.

1.0.6 Short stream effects

When the streams become too short (� 60 stream elements), the long latency in functional units
cannot be amortized and the setup and teardown interaction with the host processor dominates.

1.0.7 Teardown/setup

In order to optimize loop operations, we need to decouple the loop iteration from critical paths
(PhD thesis from Prof. Monica Lam). As the number of loop iterations increases, the effective

EE482C: Lecture #3 3

...........

ILP

DLP

SRF TLP

...........

...........

Figure 2: Axes of Scaling

LOOP PIPELINING

3

1

TIME

STREAM LENGTH2

PENALTY

EXECUTION TIME

Figure 3: Software Pipeline decouples loop iterations

penalty associated with the loop setup decreases.

4 EE482C: Lecture #3

1.0.8 Are stream processors programmable?

In the case of Imagine, almost everything is programmable, including ALU communication,
intercluster communication, register organization etc. An ALU can communicate with another
ALU in one single hop.

1.0.9 What happens if the kernel operations are executed out of order due to variable
latency (ie. in the case of polygon rendering, larger triangles need longer time to
execute than smaller triangles)?

The results of the data stream on the kernel will come out of order. There are two schemes to
solve this problem. One is by indexing each stream element before it enters the kernel then
reorder the results based on the indices. In the polygon rendering paper, the triangles need to
be properly ordered only if they affect the same pixel. To determine if two fragments generated
lie on the same screen x and y coordinates the scratch pad is used in a hash function with the
x and y as inputs. Fragments which need to be ordered are put in a stream which is reordered
while other common casefragments who don’t need orderering just go on.

2 Lecture

(from page 30 of the slides of lecture 1)

2.1 What is a Stream Processor

The stream programming model exposes parallelism, in particular data-level parallelism by
doing operations records and across nodes. A stream processor exploits three types of paral-
lelisms:

1. TLP: Thread-level Parallelism across many processors

2. DLP: Data Level Parallelism across many clusters

3. ILP: Instruction Level Parallelism across ALUs inside each cluster

Latency is hidden by performing long pipelined stream loads while computing for a long
time a relatively complex kernel (multiple instructions) on a stream of data.

*

Figure 4: Latency is hidden

EE482C: Lecture #3 5

A Stream Program also makes data communication explicit and structured. A Stream pro-
cessor will try to exploit kernel locality within each cluster and the producer-consumer locality
within the processor. The bandwidth hierarchy is better exploited by applications which have
similar ratio demands on the memory system.

Clusters

SRF

DRAM

90%

9%

1%

Figure 5: The Communication hierarchy

2.2 The Imagine Stream Processor

Imagine is a load-store architecture for streams where the Stream Register File acts as the
Nexus. Streams can be loaded in strides, or indexed from another stream. What the memory
system really needs to do is load sequential streams or indexed ones. It is better to use the
ALUs of the clusters to generate proper addresses than to make a fancy address generator in
the memory controller.

The Host processor runs the StreamC code, loads the KernelC stream programs into the
micro-controller memory from the SRF, and decides which KernelC program the clusters will
run.

The network interface which sends and receives messages to and from other Imagine pro-
cessors will move to the Memory System controller in the future Streaming Supercomputer to
make network operations like memory accesses.

2.3 Arithmetic Clusters

The ALUs are 32bit FP (can also do integer, 32bit, 16bit and 8 bit operations) they are pipelined
with various latency, and can issue one operation per cycle (with the exception of the div/sqrt

6 EE482C: Lecture #3

unit which is not fully pipelined). The mix chosen is 3 Add/sub, 2 multiply, 1 divide/sqrt. The
scratch pad is a 256 word memory that allows to do index memory operation inside a kernel
without going back to memory like in the graphics rendering paper where it was used as a hash
on screen coordinates to detect conflicts and implement openGL command ordering. The 3
input ports of the scratch pad are write address, read address and write data. It can perform
one read and one write per cycle, but no write through (read from address being written). Up
to 8 words can be read or written per cycle from the SRF. The clusters communicate with each
other through the communication unit one word per cycle.

The registers are located at the inputs of the ALUs, scratch pad and communication unit,
all the communication needs to be staged by the compiler through the crosspoint switch. This
allows for simple register design, pushing some of the burden on the compiler. There is data
replication (duplication) within the registers 2 to 3 times according to Peter Mattson’s thesis.
The registers can be bypassed such that a result can be fed back to another ALU on the same
cycle but if a loop is unrolled enough this is not necessary as latency will be insignificant.

2.4 Bandwidth Hierarchy

The bandwidth hierarchy of Imagine goes from 544GB/s within clusters, 32GB/s to the SRF
and 2GB/s to the main memory. Applications don’t make full use of all the bandwidths, be-
cause of different factors:

1. Overheads in setup and tear down

2. ALUs waiting on memory, memory waiting on ALUs, etc

3. Not perfect parallelism in application

4. Arithmetic operations demand of application differ the ALU mix offering

The ratios of the bandwidth demands is the most important factor to observe. It ranges from
90% to 98% inside the local register file for applications like depth extraction, MPEG encoder,
Polygon rendering and QR decomposition. Most important is that the ratio of local register file
bandwidth used to memory bandwidth be more than 100:1.

2.5 Physical Implementation

On the die plot, the 8 ALU clusters can be clearly seen on the bottom right, the microcode
memory just on top, the SRF and its buffers are left of the clusters. The memory controllers
are at the far left, on the top left are the host and network interface.

The chip size, 16mm by 16mm is bigger than initially projected. For the M-Machine, the
die size had started big and things had to fall off the chip so Imagine started small and grew
bigger. The factors that contributed to bloating:

EE482C: Lecture #3 7

� Changed from full-custom to standard cell. Full custom requires 10x the effort for 2x
more speed, 1/2 the area)

� Foundry partner required full-scan (test procedure to scan in/out serially register con-
tents), which made the SRF and cluster registers twice as big.

� Power estimates were too low, chip is serially bonded so big power busses had to be
added

� Some Verilog synthesized areas were underestimated (memory controllers go from 64 to
16 status register)

The ASIC process also had to be improved upon, as the routing, area and timing of the
clusters was initially poor. Brucek Khailany is publishing a paper on the methodology for
which they grouped 1 bit pitches together to achieve a 300MHz datapath TTTT.

2.6 Streaming Supercomputer

The streaming super computer (SSC) idea was born out of discussions between Bill Dally and
Pat Hanrahan regarding the inefficiencies of current supercomputers, which are mostly clusters
of symmetric multi-processors (SMPs) connected together by fairly inefficient interconnect.
The basic idea was to apply the concepts of stream computation to numerical and scientific
applications such as solving ordinary differential equations (e.g. protein folding) and partial
differential equations (e.g. fluid flow). Initial studies have shown that the memory accesses
of these applications map well to the bandwidth hierarchy of streaming architectures. How-
ever, since these applications typically use multi-dimensional and/or less regular data structures
compared to media apps, one of the major challenges is the book keeping necessary to orches-
trate the explicit memory management.

One objective of the streaming super computer project is to leverage a single micro ar-
chitecture across a range of machine sizes from single-processor palm-tops to multi-processor
workstations to multi-cabinet supercomputers. Table 1 summarizes various potential machine
sizes and their key parameters. Figure 6 shows the organization of a multi-cabinet SSC. Table
2 summarizes estimated parts costs for a SSC (without I/O).

Machine size Nodes # of FPUs Peak compute Total Memory
1 processor 1 64 64 GFLOPs 2 GB
1 board 16 1K 1 TFLOP 32 GB
1 cabinet 1K 64K 64 TFLOPs 2 TB
16 cabinets 16K 1024K 1 PFLOP 32 TB

Table 1: Potential machines sizes based on the SSC micro architecture

A key advantage of a single architecture that scales from palm-top to super computers
is program compatibility across the machines. Kernels, which are compiled for individual

8 EE482C: Lecture #3

Stream

Processor

64
 FPUs

64GFLOPS

16 x

DRDRAM

2GBytes

38GBytes/s

20GBytes/s

32+32 pairs

Node

On
-
Board Network

Node

2

Node

16
 Board 2

16 Nodes

1K
 FPUs

1TFLOPS

32GBytes

Intra
 -
Cabinet Network

(passive
 -
 wires only)

Board 64

160GBytes/s

256+256 pairs

10.5" Teradyne
 GbX

Board

Cabinet

Inter
 -
Cabinet Network

Cabinet 2

64 Boards

1K Nodes

64K
 FPUs

64TFLOPS

2TBytes

E/O

O/E

5TBytes/s

8K+8K links

Ribbon Fiber

Cabinet 16

Bisection 64TBytes/s

All links 5Gb/s per pair or fiber

All bandwidths are full duplex

Stream

Processor

64
 FPUs

64GFLOPS

16 x

DRDRAM

2GBytes

38GBytes/s

20GBytes/s

32+32 pairs

Node

On
-
Board Network

Node

2

Node

16
 Board 2

16 Nodes

1K
 FPUs

1TFLOPS

32GBytes

Intra
 -
Cabinet Network

(passive
 -
 wires only)

Board 64

160GBytes/s

256+256 pairs

10.5" Teradyne
 GbX

Board

Cabinet

Inter
 -
Cabinet Network

Cabinet 2

64 Boards

1K Nodes

64K
 FPUs

64TFLOPS

2TBytes

E/O

O/E

5TBytes/s

8K+8K links

Ribbon Fiber

Cabinet 16

Bisection 64TBytes/s

All links 5Gb/s per pair or fiber

All bandwidths are full duplex

Figure 6: Organization of a streaming super computer

processors, should be compatible across all machine classes. However, applications will need
repartitioning to efficiently scale to varying numbers of processors on the different classes of
machines. This may be accomplished by a mix of compile-time and run-time techniques.

Figure 7 shows the micro architecture of a single stream processor (node) of the SSC. Note
that the scalar processor (host) is integrated much more closely with the streaming resources
compared to Imagine, which should help alleviate some of the “short stream effects” (i.e. over-
heads of communication between host and stream processor + the setup and tear down costs
becoming dominant for short streams). The compute cluster and register file organizations are
fairly similar to Imagine.

2.7 Open Issues

There are many open questions in the design of the SSC, some of which are listed here.

� Software issues:

– Program transformation

– Program mapping

EE482C: Lecture #3 9

Item Cost Per Node Cost
Processor chip 200 200
Router chip 200 50
Memory chip 20 320
Board/backplane 3000 188
Cabinet 50000 49
Power 1 50
Per-node total cost 976
$/GFLOPs (64/node) 15
$/M-GUPs (250/node) 4

Table 2: Cost estimates (parts cost only, no I/O)

Stream Execution Unit

Stream Register File

S
ca

la
r

P
ro

ce
ss

or

Address

Generators

Memory

Control

C
ac

he

Local

DRDRAM

(38 GB/s)

N
et

w
or

k

In
te

rf
ac

e

Network

Channels

(20 GB/s)

C
lu

st
er

 0

C
lu

st
er

 1

C
lu

st
er

 1
5

Comm

FP

MUL

FP

MUL

FP

ADD

FP

ADD

FP

DSQ

Regs

Regs

Regs

Regs

C
lu

st
er

 S
w

itc
h

Regs

Regs

Regs

Regs

Regs

Regs

Regs

Regs

S
cr

at
ch

P

ad

Regs

Stream Execution Unit

Cluster

Stream Processor

To/From SRF

(260 GB/s)

LRF BW = 1.5TB/s

Stream Execution Unit

Stream Register File

S
ca

la
r

P
ro

ce
ss

or

Address

Generators

Memory

Control

C
ac

he

Local

DRDRAM

(38 GB/s)

N
et

w
or

k

In
te

rf
ac

e

Network

Channels

(20 GB/s)

C
lu

st
er

 0

C
lu

st
er

 1

C
lu

st
er

 1
5

Comm

FP

MUL

FP

MUL

FP

ADD

FP

ADD

FP

DSQ

Regs

Regs

Regs

Regs

C
lu

st
er

 S
w

itc
h

Regs

Regs

Regs

Regs

Regs

Regs

Regs

Regs

S
cr

at
ch

P

ad

Regs

Stream Execution Unit

Cluster

Stream Processor

To/From SRF

(260 GB/s)

LRF BW = 1.5TB/s

Figure 7: Streaming super computer node architecture

– Bandwidth optimization

– Conditionals

– Irregular data structures

� Hardware issues:

– Alternative stream models

– Register organization

– Bandwidth hierarchies

10 EE482C: Lecture #3

– Memory organization

– Short stream issues

– ISA design

– Cluster organization

– Processor organization

3 Stream C and Kernel C Demonstration

Please refer to the demonstration code (not reproduced here) for more details.

3.1 Stream C Demo: Element-wise Multiply of Two Streams of Complex
Numbers

Relevant Stream C commands:

� Declare and allocate streams

– e.g.: im stream
�
cplx � NAMED(in1) = newStreamData

�
cplx � (length);

� im stream keyword declares a stream
� NAMED() directive makes the stream name available to the simulator
� cplx is the data type of the stream (record type defined in .hpp file)

� Load stream contents from files to memory (note this load is to simulated DRAM, not to
the SRF)

– e.g.: streamLoadFile(in1 fname.char ptr(), "txt", "", in1);

� Call kernel(s)

– e.g.: cplx mul(in1, in2, out)

� in1, in2, and out are stream parameters

� Save output to a file

– e.g.: streamSaveFile(out fname.char ptr(), "txt", "E", out);

EE482C: Lecture #3 11

3.2 Kernel C Demo 1: Element-wise Multiply of Two Streams of Com-
plex Numbers

Observations:

� No loop-carried dependencies

� Schedule for single loop iteration inefficient (not enough ILP in one iteration to “pack”
the schedule tightly).

� Providing loop unrolling and software pipelining hints to the scheduler results in a sig-
nificantly better schedule (i.e. improves ILP by increasing the pool of instructions to be
scheduled).

3.3 Kernel C Demo 2: Element-wise Multiply of Two Streams of Com-
plex Numbers and Sum Them Up

Observations:

� Each cluster computes a partial sum of the elements that are assigned to its “local” SRF
bank (done within loop)

� Partial sums from the 8 clusters are communicated via the inter-cluster communication
network and are added using a tree sum (done outside the loop). See figure 8 for the tree
sum communication pattern.

clust
0

clust
1

clust
2

clust
3

clust
4

clust
5

clust
6

clust
7

+ + + +

+ +

+

Figure 8: Tree sum

� The inter-cluster communication patterns are explicitly specified as 32-bit numbers, with
each nibble specifying the data source for one of the clusters.

12 EE482C: Lecture #3

� The partial sum computation within the loop creates a loop-carried dependence, limiting
the ability of the scheduler to optimize using automatic software pipelining and loop
unrolling (even with hints provided).

� Manual loop unrolling in the Kernel C code leads to a much better schedule.

� A microcontroller variable (i.e. a scalar value that can be communicated between Imag-
ine and host) is used to communicate the final sum back to the host.

4 Announcements

Review session at 3:00pm on Friday on 04/20/2002. The examples presented in class and the
programming system will be discussed in more detail.

