
EE482C: Advanced Computer Organization Lecture #8
Stream Processor Architecture
Stanford University Tuesday, 30 April 2002

Project Brainstorm

Lecture #8: Tuesday, 30 April 2002
Lecturer: Prof. Bill Dally
Scribe: Rex Petersen
Reviewer: Mattan Erez

Announcements:

o The due date for HW1 has been postponed until this Thursday 5/2

o Project proposals are due next Tuesday on 5/7

o Next lecture will be a Brook Tutorial. There will be two handouts: Brook: A
Stream Processing Language and Brook QuickSpec. Note that the QuickSpec is the
most up-to-date if there are discrepancies between the two.

During this lecture we discussed ideas for final projects for the course. Professor Dally
gave some general guidlines and direction for the projects and answered questions as we
discussed different ideas from the handout on suggested project topics.

1 General Ideas that Apply to Most Projects

FIGURE
of MERIT

CONFIG

INPUT

SIMULATION output

RESULTSANALYSIS

Figure 1: General Flow for a Project

Most projects will require the identification of inputs and configurations that will go
into a test or simulation. It is also necessary to decide how the output will be analyzed.
This requires some figure of merit to determine which output is better than another.



2 EE482C: Lecture #8

There were three items identified that each project team should be able to define:

o INPUT: A set of applications to be tested, code to be compiled or scheduled, etc.

o CONFIG: The types of configurations to be explored such as a different number of
ALUs per cluster, scheduling algorithms, compile techniques, etc.

o FIGURE of MERIT: This is the criteria used to evaluate the results such as shortest
execution time, lowest cost based on a cost model, smallest area, or the most
effective utilization of resources.

Professor Dally recommended doing a combination of brainstorming on your own as
well as reading what others in industry have done already. He cautioned that reading
everything out there first can sometimes dampen your creativity and you will tend to go
in the same directions that others have gone even though there may be a better way to
approach the problem.

A student commented that the best project ideas are those that are tractable, inter-
esting, and load balanced. Professor Dally expanded on this comment and recommended
that students look for low hanging fruit that can produce some early initial results since
we only have 5 weeks for the project. It should lay some initial groundwork in an area.
”You need to be a little bit fearless and dive right in.”

2 Legacy Architecture

L1 Cache

L2 Cache

DRAM

Execution

Units (ALUs)

Typical Legacy Processor

Figure 2: Legacy Cache

A project in this area would investigate how
stream processing could improve the perfor-
mance of an existing processor such as the Intel
P4. For example, use the concepts of stream
scheduling to make better use of the cache.

The cache on a legacy processor shown
here in Figure 2 is very reactive and waits
until it misses and then does something. A
more efficient design may be more ”stream-
like” where data is moved into the cache in
a way that will allow for fast access and
evictions could be forced on data when it
is known that that data will not be used
again.



EE482C: Lecture #8 3

3 Mapping Legacy Code to Streams

Select an interesting application. Find out its issues such as bandwidth demands, memory
footprint, etc. You don’t have to convert the entire application into a stream language to
do this study. Professor Dally stated that the outcome might be: ”Here’s a better way
to build a stream processor that would be better for this application”.

4 Aspect Ratio

Given some number of ALUs in a stream processor, what is the best way to distribute
these resources across the three axes of parallelism: DLP (more clusters), ILP (more
ALUs per cluster), or TLP (more independent execution engines)?

DLP

TLP

ILP

Figure 3: Aspect Ratio project would explore each axis of parallelism

The control case for this project could be 1 ALU, 1 cluster, and 1 thread. You will
need to decide on a cost model for adding more ALUs or clusters and look at options
that lie on the constant cost plane. The figure of merit could be execution time.

• Question: What part of the configuration do we have control over?

There is an *.md file that allows you to specify the number of ALUs per cluster. There
is a #define for the number of clusters but many locations in the code assume that this
is set to 8 (which is the number of clusters on Imagine). It is possible to experiment with
less than 8 clusters but it will require more work to go above 8. There is also some ability
to link multiple stream processors together using networking, which is working but not
heavily tested.

5 High Level Language Issues

What should a stream language look like? Should it have retained state? This is a
debated issue with the trade-offs being ease of coding vs. complexity and efficiency of



4 EE482C: Lecture #8

the compiler. Machine specific issues such as the number of clusters should not show up
in a high level language.

A few comments were made about Brook which has no retained state aside from
reduction variables. More details on Brook will be covered next time.

6 Time vs. Space Multiplexing

Investigate the advantages of both time and space multiplexing. The Imagine and RAW
stream processors have provided two different examples of using time and space. Design
an experiment to explore the continuum of options between the two extremes. The
results should be useful for those designing the next generation of stream processors.
It was noted that there are many differences between RAW and Imagine that make it
difficult to clearly evaluate the performance impact of each feature separately. In this
project it is recommended that you focus on just one issue such as the use of time vs.
space.

x

y

time

Figure 4: The challenge is mapping kernels into both space and time.

Combining both concepts of time and space multiplexing involves mapping kernels
onto the graph shown here in Figure 4. One approach might be to consider how long
each kernel may take and the bandwidth of the kernel output. On the RAW project they
use kernel fission (where long kernels are split) and kernel fusion (where small kernels
are combined).

It was pointed out that when looking at the best option for a processor in the future,
it is important to consider the impact of process scaling and technology improvements
that will effect power, delay, and area in the target timeframe.

7 Dealing with Irregular Data Structures

Investigate methods for executing programs with irregular data structures on a stream
processor. An example of an irregular grid was discussed as shown in Figure 5.



EE482C: Lecture #8 5

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
� �

�
�

�
�
�

��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�

�
�
�

����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����

�
�
�
�
�
�
�

�
�
�
�
�
�
�
����
����
����
����
����

����
����
����
����
��������������������

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

����������

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

�����
�����
�����

�����
�����
�����

����
����
����

����
����
����

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�����
�����
�����

�����
�����
�����

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

������
������
������
������

������
������
������
������

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

���������
���������
���������
���������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

����������

Figure 5: Example of an irregular grid

Consider an operation where the average of all neighboring points must be calculated
at each point on the grid. Note that the point in the center has 7 neighbors, while other
points have only 2.

The brute force method of doing this calculation would be to preprocess the grid and
determine a value for MaxNeighbors, then assume each point has 7 neighbors some of
which will be null. One problem with this method is that it wastes memory resources.

8 Bandwidth Heirarchy

An idea was presented to improve performance when dealing with the case where multiple
computational units need the same piece of data from the SRF. One possible solution
would be to put an extra cache between the SRF and the execution clusters.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

CACHESRF

ALU

CLUSTERS

Multiple requests for the same data

in the SRF will hit in the cache and

save on SRF bandwidth.

Figure 6: A cache could cut demand on SRF bandwidth

This would cut the demand on the SRF bandwidth since multiple requests would
hit in the cache. This would be helpful in the irregular grid problem where the same
neighbor value is read many times to compute the average at nearby points.


