
EE482C: Advanced Computer Organization Lecture #14
Stream Processor Architecture
Stanford University Tuesday, 21st May 2002

Graphics Papers

Lecture #14: Tuesday, 21st May 2002
Lecturer: Prof. Bill Dally
Scribe: Timothy Knight, Jung Ho Ahn
Reviewer: Mattan Erez

1 Comparison of Different Architectural Approaches

The following table(s) contain description of the techniques used to handle parallelism,
the hiding of memory latency, gaining sufficient memory bandwidth, and design and
programming complexity for the 3 different architectural approaches discussed in class.

Vectors Multithreading Streams

Parallelism Data level parallelism at
the operation level.

Thread level parallelism.

• Synchronization
costs are high.

• Instruction cost -
instruction fetches
per computation.

• More flexible
(MIMD vs. SIMD)

Data level parallelism at
the kernel level.

• Gives better reuse
than data paral-
lelism at the opera-
tion level.

Table 1: Comparison of Different Architectural Approaches



2 EE482C: Lecture #14

Vectors Multithreading Streams

Memory La-
tency

Hides latency by:

• Overlapping mem-
ory access with
computation.

• Amortizing the la-
tency cost over the
length of the vector.

Hides latency by:

• Switching threads -
do something else
while waiting.

• Replicating state to
allow fast context
switching.

Enables data-dependent
pointer chasing, since
with vectors and streams
need to know ahead of
time the memory ad-
dresses needed in order
to amortize latency.

Hides latency by:

• Overlapping mem-
ory access with
computation.

• Amortizing the
latency cost over
the length of the
stream.

• Exploiting
producer-consumer
locality.

Bandwidth Need a very high band-
width memory system.
No advantages over con-
ventional processors.

Threads compete for the
cache.

• Can get interfer-
ence, or synergistic
sharing.

Reduces demand with
producer-consumer local-
ity. Can get some of
this advantage in a con-
ventional machine using
a cache, but a stream
machine has a better
bandwidth heirarchy, il-
lustrated in figure 1.

Table 2: Comparison of Different Architectural Approaches (cont.)



EE482C: Lecture #14 3

Vectors Multithreading Streams

Design
Complexity

Simplest to design. High complexity:

• Multiple instruc-
tion.

• Synchronization.

• etc.

Moderate complexity:

• Microcontroller.

• LRFs.

Program.
Complexity

Easy - vector ops. Familiar but difficult:

• Synchronization.

• ‘Thread-safe’ code.

Need to make some
things explicit, such as
global references.

Table 3: Comparison of Different Architectural Approaches (cont.)

Memory

SRF

LRF

ALUs

1

15

250

Memory

Cache

Registers

ALUs

1

4

144

Stream
Architecture

Conventional
Architecture

Figure 1: Bandwidth Hierarchies: Imagine vs. Pentium-4



4 EE482C: Lecture #14

2 NVIDIA Graphics Paper

The NVIDIA paper ‘A User-Programmable Vertex Engine’ by Lindholm et. al. was
discussed.

• It presents an introduction of stream processing into a fixed function pipeline.

• They removed a fixed stage and replaced it with a ‘stream processor’ without a
memory system - basically, a cluster.

• The question was raised: Are graphics chips becoming stream processors? Due to
being in a price sensitive market, they will most likely never become truly general
purpose, rather become multithreaded SIMD processor. But they are trending in
that direction.

• Will a graphics processor ever be used to do general purpose computation? Maybe
for niche applications; difficulties with making random memory accesses. More
likely to have a processor extension which is stream-like - need to standardize a
platform so that software vendors can target it.

3 Purcell Graphics Paper

The paper ‘Ray Tracing on Programmable Graphics Hardware’ by Purcell et. al. was
discussed.

• They’re doing random memory accesses through the texture cache.

• They brought up the issue of multipath vs conditional loop. They want branching
for conditional loops and not for arbitrary conditionals in order to achieve the
efficiency.

• They made a very high level simulator of a new (non-existing) graphics chip to
perform their experiments. This is a pretty efficient way to work, because no
processor exists right now which satisfies their architectural necessities. They took
performance values from a current NVIDIA chip and extrapolated those for what
they wanted.

• They need an SRF? There exists locality, so if they could keep the state of rays
around, less memory bandwidth would be needed.

• GPU (graphic processing units) are becoming more general, but are still essentially
dedicated graphics chips.



EE482C: Lecture #14 5

4 Other Comments

• For general storage units, the bigger the slower.

• Some pitfalls in Imagine which limit its use as a graphics processor, specifically it
has fewer arithmetic units per unit area than specialized graphics chips.

• Pin packaging trends and issues were introduced - number of pins on a package
is increasing much more slowly than number of transistors in a chip. Pins can be
time-multiplexed at a very high frequency to attain a greater effective bandwidth
into and out of the chip.


