
EE482C: Advanced Computer Organization Lecture #16
Stream Processor Architecture
Stanford University Tuesday, 28 May 2002

Overview of Stream Processing
Lecture #16: Tuesday, 28 May 2002
Lecturer: Prof. Bill Dally
Scribe: Jacob Chang, Njuguna Njoroge
Reviewer: Mattan Erez

Overview of Stream Processing

• Concept

• Motivation

• Hardware

• Software

1 Three Concepts in Stream Processing

1.1 Streams

Streams are a sequential accesses to a string of records by the computational machines.
They can be stripped into sub-streams for computation.

1.2 Kernels

Kernels are the computational units used on streams. The advantage of thinking in
terms of kernels is that their global accesses are made explicit. For example, all data
for the kernel in Imagine must be placed as an input or as an output stream in a kernel
argument.

Kernel
Stream of Records

Figure 1: concept of streams

2 EE482C: Lecture #16

Producer Consumer Locality

kernel

kernel

Kernel Locality

StripStream

10X increase 10X increase

in ALU to Mem Op ratio in ALU to Mem Op ratio

Figure 2: bandwidth hierarchy

1.3 Bandwidth Hierarchy

A traditional processes tries to reduce the off-chip memory access by the use of caches.
Caches takes advantage of the spatial and temporal locality. But a stream processor takes
advantage of the producer/consumer locality.

The Stream processor utilizes a bandwidth hierarchical system which keeps most of
the data movement local (about 90%), some of it spills out to the stream-register files
(about 9%) and the remainder rarely accesses the off-chip memory (1%). This system
helps hide the latency of the off-chip memory accesses.

A stream processor is particular proficient in keeping the ratio of memory operations
to arithmetic operations very low. A traditional accumulator has 1:1 ratio, a scalar
processor, 1:4 and the stream processor 1:100.

2 Motivation

There are several key motivations for designing stream processors, the main two being
technology-based and application driven.

ALU’s are very cheap and take little space–a 64 bit FPU is smaller than 1mm2. What
is expensive is the bandwidth (i.e. connecting these ALU’s). Each ALU requires control

EE482C: Lecture #16 3

Data In

Data In

Data Out

Control

Figure 3: alu connections

data, input data and output data buses.
Furthermore, bandwidth does not scale at the same rate as the growth of ALU units.

Therefore, we want our connections to be as close as possible. This has a couple ramifica-
tions. First, we reduce demand on BW and second, we only use it where it is inexpensive.
Futhermore, we can hide bandwidth latency, which minimizes performance cost.

There is a class of applications that lend themselves to being streamed processed.
They have several defining characteristics. First, they provide an opportunity to exploit
parallelism. Secondly, they have little or no data re-use, which makes using a conventional
cache expensive. Finally, these applications have high computational intensity, which
enables a high ratio of computation to data.

3 Stream Hardware

3.1 Definition

Before exploring the hardware of stream processors, we must first come up with a
comprehensive definition for a stream processor.

The first criterion for a SP is that it must be able to support streams and kernels.
(Note that any current computer would satisfy this criteria.)

Second, a SP exploits kernel locality and producer-consumer locality. Kernel locality
refers to granularity on the intra-kernel level. For instance, the output of one ALU can
be fed to a neighboring ALU. Producer-consumer locality is on the inter-kernel level,
where the stream produced from one kernel is fed into another kernel.

Third, a SP has high arithmetic intensity, which means that it has a high arithmetic
computation/bandwidth ratio.

Stream processing hardware can come in several forms. It can be time multiplexed
(like Imagine), space multiplexed (like RAW) or a combination of both.

4 EE482C: Lecture #16

SRF

ClusterMem

Figure 4: imagine style processor

3.2 Imagine Style Stream Processor

As illustrated in the diagram 3.2, the SP is connected to off-chip memory, data from
which is fed into the on-chip Stream Register File. The data from the SRF is fed into
stream buffers, which eventually feed the 8 clusters. Each cluster has 6 ALU units, each
with its own register file.

3.3 Issues for Imagine Design

3.3.1 Register Organization

There are different ways to organize a processor’s register file. The traditional imple-
mentation is a centralized register file. This does not work too well with large numbers
of ALU units because the size of the RF grows N3 as the number of ALU increases. A
practical alternative is use a distributed register file as shown in figure 3.3.1. A DRF
size grows with N2 as the number of ALU increase. Clustering (making it SIMD) a cen-
tralized architecture reduces the area usage by a constant factor (divides the area by the
number of clusters). Applying clustering on a DRF also reduces the area by the number
of clusters. Finally, applying a memory split leads to the best area usage. You split the
register file into two main partitions: a sector with low capacity, but large number of

EE482C: Lecture #16 5

Figure 5: distributed register file

Lots of Ports
Low Capicity

Few ports
High capacity

Figure 6: split register file

ports (high BW) and another sector with higher capacity, but small number of ports (low
BW) as shown in figure 3.3.1. Figure 3.3.1 illustrates the performance of the various
register file types.

Stream buffers act as the intermediary between the SRF and the clusters’ register files
in a stream processor and also between the SRF and the memory system. Stream buffers
effectively time-multiplex the single physical port of the SRF into many logical ports that
can be accessed simultaneously. Furthermore, stream buffers lead to an area and power
efficient implementation that provides a simple, extensible mechanism by which clients
can access the SRF.

3.3.2 Control

One can view the programming of Imagine at two levels. One writes a Stream Program
to deal with the manipulation of Streams such as load and store streams into the SRF.
The Kernel Program are the instructions to the Clusters. This type of programming

6 EE482C: Lecture #16

8 64 ALU’s

Area/ALU

1

Central RF

N^2 per ALU

Distributed − N per ALU

SIMD

Split register file

Figure 7: register organization

model localizes the computational intensive units to computational intensive works. The
disadvantage of this is that it makes Imagine harder to program.

3.3.3 Conditionals

Conditional statements in programs are typically hard to deal with in a SIMD archi-
tecture. There are two ways Imagine deals with conditionals inside the program.

One way is to do predication, which is what a typical SIMD machine deals with
conditional statements. Predication means that if it encounters a branch, it does both
branches on all data. This results in doing unnecessary work, and is especially wasteful
for branches that are large. In Imagine predication is performed in software with the
select operation.

Another way that Imagine can deal with imagine is with conditional streams. This is
illustrated in diagram 3.3.3. This method does not waste computations on unnecessary
work, but it does have a constant communication cost for communication the conditional
outputs and inputs between clusters.

3.3.4 Extending to Multi-node

One can put together multiple Imagines in a networked fashion for computation also.
This allows the ability to multiplex the different kernels in space in additional to time.
Or it can also be configured to run parallel kernels to exploit data parallelism.

EE482C: Lecture #16 7

false

true

merge

Figure 8: conditional streams

3.3.5 Aspect Ratio

We want to evaluate how “good” an architectural design is based on the perfor-
mance/cost ratio. The performance aspect of the design not only depends on how many
functional units are available on the chip, but also how often they are doing useful work.
How many functional units a chip can have is usually not an issue at this time, but how
to keep those functional units busy is the real issue.

So the real question is how much bandwidth can we supply to the functional units to
keep them busy. Ideally, we would like to keep all the connections local to minimize cost
instead of needing to communicate across chip or off chip.

With this in mind, the best way to gain this performance vs. the cost is by exploiting
data parallelism of computation. It does not increase the instruction bandwidth, and it
allow the results to stay local. In Imagine, this is exploited by having multiple clusters.
However, as we increase the data parallelism in Imagine, we will start to run into the
short stream effect. When there are short streams, there isn’t enough data to keep the
cluster busy all the time.

So the next step is to take advantage of instruction level parallelism. Imagine does this
by keeping intermediate stream results between kernels in the Stream Register File(SRF)
and individual calculations within the kernel in the Local Register File (LRF). However,
increasing the ILP will have a corresponding increase in communication cost.

Lastly, one can take advantage of thread level parallelism, where multiple threads
can be run at the same time on parallel Imagines. It is arguable that the increasing the
ILP will give better tradeoff than increasing TP. But it is believed that ILP does offer a
better tradeoff because one does not have to duplicate a lot of the hardware such as the
sequencer in ILP.

8 EE482C: Lecture #16

4 Stream Software

The goal of looking at stream software issue is to easily and efficiently map applica-
tions to the stream models. To do this, we will have to look at the type of applications
we are trying to map, the languages that can be used to describing a streaming program,
and a compiler that is able to may to the hardware efficiently.

4.1 Languages

The goal of stream programming language is to give the user the ability to express
parallelism and locality.

One such example is the Stream C/Kernel C language. It is targeted towards the
specific architecture of Imagine. It exposes the explicit communication of the Imagine
chip and kernel C can only deal with stream accesses.

The StreaMIT language derives the communication implicitly using the peek opera-
tion in the language.

Brook uses Stencils to specify the communication pattern.

4.2 Compilation

The goal of the compilation process is to map the application to the underlying
hardware.

On the stream level, the compiler needs to deal with the stream manipulations to
map the application efficiently. One issue that needs to be dealt with on Imagine is
strip-mining. We would like the compiler to strip mine the input data when the input
dataset is too large. The other thing we would like the compiler to deal with is software
pipelining over the strips. This is so that one can read and execute operations at the
same time to hide memory latency. For example, for the operation shown in figure 4.2,
one can set the schedule as follows:

Memory Schedule Kernel Schedule
M1 K0
M2 K1

K2
So as we can see, the memory operation 1 can be conducted in parallel with kernel

0, and when kernel 0 finishes, hopefully the memory operation will be done and kernel 1
can be started right away.

On the kernel level, we would like to map the kernel to the hardware, dealing with the
issue of having multiple, distributed ALUs. The compiler should also deal with ordering
the operations and scheduling them as well scheduling the communications.

EE482C: Lecture #16 9

K0 K1 K2

M1 M2

Figure 9: software pipeline example

5 Summary

The Imagine processor have demonstrated to have a 1:100 memory operation to ALU
operation ratio, which makes it effective for “media” processing. It can also have the
potential for scientific computing study. However, there are issues with writing the
software on Imagine. Some things that we would like to still address is to automate the
inter-cluster communication, strip-mining, pipeline and scheduling of programs. Basically
there is a pressing need to reduce programming complexity on Imagine. Also, other issues
to address include figuring out how to convert existing software to run on Imagine, and
on the hardware side, find an effectively way to deal with conditionals and explore the
use of caches in the processor.

