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Today’s Class Meeting

• What is EE482C?
– Material covered
– Course format
– Assignments
– Scribing

• What is Stream Processor Architecture?
– What problem is being solved

• Performance scaling, power efficiency, bandwidth bottlenecks

– What is a stream program?
– What is a stream processor
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What is EE482C?

• New course in EE482 sequence (advanced comp. arch.)
– EE482A – superscalar architecture
– EE482B – interconnection networks
– EE482C – stream processor architecture

• Course format
– Readings – typically one or two papers per class meeting

• Read the paper before the meeting for which it is listed
• E.g., read Rixner et al. before 4/9/02

– Mix of lecture and discussion in class meetings
• Be prepared to discuss each reading

– Two programming assignments
• One in StreamC/KernelC, one in Brook

– Class project 
• Original research on stream architecture or programming
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Where to find more information

• Course policy sheet
• Web page http://cva.stanford.edu/ee482c
• Class schedule

– Subject to change
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What is a Stream Processor?

• A stream program is a computation organized as streams 
of records operated on by computation kernels.

• A stream processor is optimized to exploit the locality and 
concurrency of stream programs

• More later
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Stream Processing is becoming pervasive

Insights
Peter Huber, 01.07.02
A new type of 
computing--"stream 
computing"--has 
emerged to handle the 
back end of sonar, 
radar, X-ray sources 
and certain broadband 
applications such as 
voice-over Internet 
and digital TV. 
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Motivation – Why do we need a stream 
processor?

• Application demand
• Power
• Bandwidth
• Performance Scaling
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Application Pull

• Emerging media applications demand 10s of GOPS to 
TOPs with low power.
– Video compression
– Image understanding
– Signal processing
– Graphics

• Scientific applications also need TOPs of performance 
with reasonable cost
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Conventional Processors No Longer Scale 
Performance by 50% each year 
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Future potential of novel architecture is large 
(1000 vs 30)
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Clock Scaling: Historical and Projected
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Anant Agarwal (MIT) Panel at HPCA ‘02
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Pentium III vs. Pentium IV

2x108108# Grids

12KBytes16KBytesL1 D$ Capacity

42 million24 millionTransistor Count

217mm2106mm2Die Size

0.350.45SpecInt/MHz

524454SpecInt2000

1.5GHz (10.4 FO4)1GHz (15 FO4)Clock Rate

2010Pipeline Stages

180nm180nmTechnology

Pentium IVPentium III
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Why do Special-Purpose Processors Perform 
Well?

Fed by dedicated wires/memoriesLots (100s) ofALUs
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Care and Feeding of ALUs

Data
Bandwidth

Instruction 
Bandwidth

Regs

Instr.
Cache

IR

IP

‘Feeding’ Structure Dwarfs ALU
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Stream Programs make communication explicit

• This reduces energy and delay
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Energy is a matter of distance (interconnect)

1.1nJ 130pJExecute a uP instruction (SB-1)

10pJ 0.6pJ32b Register Read

1.9nJ 1.9nJTransfer 32b off chip (200M HSTL)

1.3nJ 400pJTransfer 32b off chip (2.5G CML)

100pJ 17pJTransfer 32b across chip (10mm)

50pJ 3pJRead 32b from 8KB RAM

5pJ 0.3pJ32b ALU Operation

Energy
(0.13um) (0.05um)

Operation

300: 20: 1 off-chip to global to local ratio in 2002
1300: 56: 1 in 2010
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Interconnect dominates delay

2800ps 4600psTransfer 32b across chip (20mm)

325ps 125ps32b Register Read

1400ps 2300psTransfer 32b across chip (10mm)

780ps 300psRead 32b from 8KB RAM

650ps 250ps32b ALU Operation

Delay
(0.13um) (0.05um)

Operation

2: 1 global on-chip comm to operation delay
9: 1 in 2010
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What is a Stream Program?

• A program organized as streams of records flowing 
through kernels

• Example, stereo depth extraction
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Stereo Depth Extraction Stream Program

SAD

Image 1 convolve convolve

Image 0 convolve convolve

Depth Map

Kernels exploit both 
instruction (ILP) and data 
(SIMD) level parallelism.

Streams expose 
producer-consumer 
locality.

Kernels can be partitioned 
across chips to exploit task 
parallelism.

The stream model exploits 
parallelism without the 
complexity of traditional 
parallel programming.
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Why Organize an Application This Way?

• Expose parallelism at three levels
– ILP within kernels
– DLP across stream elements
– TLP across sub-streams and across kernels
– Keeps ‘easy’ parallelism easy

• Expose locality in two ways
– Within a kernel – kernel locality
– Between kernels – producer -consumer locality
– This locality can be exploited independent of spatial or temporal 

locality
– Put another way, stream programs make communication explicit
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Streams expose Kernel Locality missed by Vectors

• Streams
– Traverse operations first

• All operations for one record, 
then next record

• Smaller working set of 
temporary values

– Store and access whole records 
as a unit

• Spatial locality of memory 
references 

– e.g., get contiguous record on 
gather/scatter

• Vectors
– Traverse records first

• All records for one operation, 
then next operation

• Large set of temporary values
– Group like -elements of records 

into vectors

• Read one word of each record at 
a time

– No locality on gather/scatter
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Example – Vertex Transform
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Vertex transform with Streams vs. Vectors

• Small set of intermediate 
results

– enable small and fast LRFs

• Large working set of 
intermediates

– VL times larger (e.g. 64x)
– Must use a large, slow global 

VRF
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What class of applications can be written as 
stream programs?

• Media applications (signal, image, video, packet, and 
graphics processing) are naturally expressed in this style

• Scientific applications can be efficiently cast as stream 
programs

• Others?
– This is an open question

• Hypothesis
– Any application with a long run time (large operation count) has a 

great deal of parallelism and hence can be cast as a stream 
program.
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Example, Ingress Packet Functions

Finalize Route
Classify Pkt

Route Table
1 s t Address

Calc

Rd

Route Table
2n d Address

Calc

Rd

Route Table
3 rd Address

Calc

Rd

Policing
Calculation

Compute
Statistics
Updates

F&A F&A
Compute

Packet Queue
Address

Wr

Extract Header
Fields

Packet Checks
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Split into Kernels

Finalize Route
Classify Pkt

Route Table
1st Address

Calc

Rd

Route Table
2 nd Address

Calc

Rd

Route Table
3rd Address

Calc

Rd

Policing
Calculation

Compute
Statistics
Updates

F&A F&A
Compute

Packet Queue
Address

Wr

Extract Header
Fields

Packet Checks
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Software Pipeline The Loop

i-6 i-4 i-2 i
Arithmetic
Clusters

Memory
Channel 1

Memory
Channel 2

i-1i-3i-5

i-7

i-7

Each block represents a kernel or
memory operation on a strip of packets
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Is it hard to write stream programs?

• We will let you be the judge of that.
• It does constrain how you write a program
• Depends on the quality of the programming tools.
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What is a Stream Processor?

• A processor that is optimized to execute a stream 
program

• Features include
– Exploit parallelism

• TLP with multiple processors
• DLP with multiple clusters within each processor

• ILP with multiple ALUs within each cluster

– Exploit locality with a bandwidth hierarchy
• Kernel locality within each cluster

• Producer -consumer locality within each processor

• Many different possible architectures
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The Imagine Stream Processor

Stream Register File
Network
Interface

Stream
Controller

Imagine Stream Processor 
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Arithmetic Clusters
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A Bandwidth Hierarchy exploits locality and 
concurrency

• VLIW clusters with shared control
• 41.2 32-bit floating -point operations per word of memory BW

2GB/s 32GB/s
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ALU Cluster

ALU Cluster
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544GB/s
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A Bandwidth Hierarchy exploits kernel and 
producer-consumer locality

Memory BW Global RF BW Local RF BW
Depth Extractor . GB/s   . GB/s   . GB/s   

MPEG Encoder . GB/s   . GB/s   . GB/s   

Polygon Rendering . GB/s   . GB/s   . GB/s   

QR Decomposition . GB/s   . GB/s   . GB/s   

2GB/s 32GB/s

SDRAM

SDRAM

SDRAM

SDRAM
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ea
m
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ALU Cluster

ALU Cluster

ALU Cluster

544GB/s
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Producer-Consumer Locality in the Depth 
Extractor 

Memory/Global Data SRF/Streams Clusters/Kernels

row of pixels

previous partial sums
new partial sums

blurred row

previous partial sums
new partial sums
sharpened row

filtered row segment

filtered row segment
previous partial sums

new partial sums
depth map row segment

Convolution
(Gaussian)

Convolution
(Laplacian)

SAD

1 : 23 : 317
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Bandwidth Demand of Applications
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Die Plot
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Die Photos

• 21 M transistors / TI 0.15µm 1.5V CMOS / 16mm x 16mm
• 300 MHz TTTT, hope for 400 MHz in lab
• Chips arrived 4/1/02, no fooling!

[Khailany et al., ICCD ’02 (submitted)]
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Performance demonstrated on signal and 
image processing
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16-bit kernels
16-bit

applications

floating-point
application

floating-point
kernel
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Initial studies indicate that it also applies to 
solving PDEs and ODEs
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Architecture of a Streaming Supercomputer

Stream
Processor
64 FPUs

64GFLOPS

16 x
DRDRAM
2GBytes

38GBytes/s

20GBytes/s
32+32 pairs

Node

On-Board Network

Node
2

Node
16 Board 2

16 Nodes
1K FPUs
1TFLOPS
32GBytes

Intra-Cabinet Network
(passive - wires only)

Board 64

160GBytes/s
256+256 pairs

10.5" Teradyne GbX

Board

Cabinet

Inter-Cabinet Network

Cabinet 2
64 Boards
1K Nodes
64K FPUs

64TFLOPS
2TBytes

E/O
O/E

5TBytes/s
8K+8K links

Ribbon Fiber

Cabinet 16

Bisection  64TBytes/s

All links 5Gb/s per pair or fiber
All bandwidths are full duplex
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Streaming processor

Stream Execution Unit

Stream Register File
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Rough per-node budget

200200Processor chip

4$/M-GUPS (250/node)

15$/GFLOPS (64/node)

976Per-Node Cost

501Power

4950000Cabinet

1883000Board/Backplane

32020Memory chip

50200Router chip

Per NodeCostItem

Preliminary numbers, parts cost only, no I/O included.
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Many open problems

• A small sampling
• Software

– Program transformation
– Program mapping

– Bandwidth optimization

– Conditionals
– Irregular data structures

• Hardware
– Alternative stream models

– Register organization
– Bandwidth hierarchies

– Memory organization

– Short stream issues
– ISA design

– Cluster organization

– Processor organization
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Next Time

• Discuss Imagine paper
• Discuss the stream programming model
• Lecture on software view of streams


