EE482S Lecture 2 Discussion of 2 Papers Conclusion of Introductory Material

April 9, 2002

William J. Dally Computer Systems Laboratory Stanford University billd@csl.stanford.edu

Today's Class Meeting

- Discuss two papers
 - Imagine: Media Processing with Streams
 - Khailany et al., IEEE Micro, March-April 2001
 - Polygon Rendering on a Stream Architecture
 - Owens et al., Eurographics HWWS, 2000.
- Conclude introductory discussion on Stream Architecture
 - What is a stream processor

Discussion of Imagine Paper

Discussion of Polygon Rendering Paper

What is a Stream Processor?

- A processor that is optimized to execute a stream program
- Features include
 - Exploit parallelism
 - TLP with multiple processors
 - DLP with multiple clusters within each processor
 - ILP with multiple ALUs within each cluster
 - Exploit locality with a bandwidth hierarchy
 - Kernel locality within each cluster
 - Producer-consumer locality within each processor
- Many different possible architectures

The Imagine Stream Processor

Arithmetic Clusters

A Bandwidth Hierarchy exploits locality and concurrency

- VLIW clusters with shared control
- 41.2 32-bit floating-point operations per word of memory BW

A Bandwidth Hierarchy exploits kernel and producer-consumer locality

Producer-Consumer Locality in the Depth Extractor

Bandwidth Demand of Applications

Die Plot

Die Photos

- 21 M transistors / TI 0.15µm 1.5V CMOS / 16mm x 16mm
- 300 MHz TTTT, hope for 400 MHz in lab
- Chips arrived 4/1/02, no fooling!

Copyright (C) by William J. Dally All Rights Reserved et al., ICCD '02 (submitted)]

Performance demonstrated on signal and image processing

Initial studies indicate that it also applies to solving PDEs and ODEs

Architecture of a Streaming Supercomputer

Streaming processor

Rough per-node budget

Item	Cost	Per Node
Processor chip	200	200
Router chip	200	50
Memory chip	20	320
Board/Backplane	3000	188
Cabinet	50000	49
Power	1	50
Per-Node Cost		976
\$/GFLOPS (64/node)		15
\$/M-GUPS (250/node)		4

Preliminary numbers, parts cost only, no I/O included.

Many open problems

- A small sampling
- Software
 - Program transformation
 - Program mapping
 - Bandwidth optimization
 - Conditionals
 - Irregular data structures

- Hardware
 - Alternative stream models
 - Register organization
 - Bandwidth hierarchies
 - Memory organization
 - Short stream issues
 - ISA design
 - Cluster organization
 - Processor organization

Next Time

• Walk through a streaming application