
Copyright (C) by William J. Dally, All Rights ReservedEE482C, L9, May 2, 2002 1

EE482S
Lecture 9

Stream Programming Languages
Brook Tutorial

May 2, 2002

William J. Dally
Computer Systems Laboratory

Stanford University
billd@csl.stanford.edu

Copyright (C) by William J. Dally, All Rights ReservedEE482C, L9, May 2, 2002 2

What is a Stream Programming Language?

• Describes kernels and streams

• Makes communication explicit
– No ‘random’ memory references within kernels

• Easy to program
– Sometimes at odds with explicit communication

Image 0 convolve convolve

Copyright (C) by William J. Dally, All Rights ReservedEE482C, L9, May 2, 2002 3

What are the Issues?
Part I - Kernels

• How is a kernel described?
– Implicit or explicit
– Retained state or functional
– Access across input streams
– Access to multidimensional structures
– Access to irregular structures (unstructured grids)
– Access to ‘global’ data

Copyright (C) by William J. Dally, All Rights ReservedEE482C, L9, May 2, 2002 4

Implicit vs Explicit

.

.
// loop over stream elements
for(i=0;i<MAX-FIRLEN;i++){

s = 0 ;
// loop over filter coeff.
for(j=0;j<FIRLEN;j++)

s += a[i+FIRLEN-1-j]*h[j] ;
b[i-FIRLEN+1]= s ;

}

kernel fir(floats a[i:0,FIRLEN-1],
float h[FIRLEN], out floats b) {
s = 0 ;
for(j=0;j<FIRLEN;j++)

s += a[FIRLEN-1-j]*h[j] ;
b = s ;

}

.

.
fir(a, h, b) ;

Copyright (C) by William J. Dally, All Rights ReservedEE482C, L9, May 2, 2002 5

Actual Brook Code

typedef stream float floats ;
typedef stream float floatws[FIRLEN] ;

floats a, b ;
floatws aa ;
streamSetLength(a,1024); streamSetLength(b,1024) ;
streamStencil(aa,a,STREAM_STENCIL_CLAMP,1,0,FIRLEN-1) ;

kernel fir(floats aa[FIRLEN], float h[FIRLEN], out floats b) {
float s = 0 ;
for(j=0;j<FIRLEN;j++)

s += aa[FIRLEN-1-j]*h[j] ;
b = s ;

}

fir(aa,h,b) ;

Copyright (C) by William J. Dally, All Rights ReservedEE482C, L9, May 2, 2002 6

Retained State vs Functional

// output stream is running sum of
// input stream
kernel scan(istream a, ostream b){
s = 0 ;
loopstream(a){
a >> x ;
s += x ;
b << s ;

}
}

// Each element of b is only a function
// of the corresponding element of a
// scan requires “reduction” variables
kernel fn(floats a, out floats b) {
b = function(a) ;

}

// scan with reduction variable
kernel scan(floats a, out floats b,

reduce float s) {
s = s + a ;
b = s ;

}

Copyright (C) by William J. Dally, All Rights ReservedEE482C, L9, May 2, 2002 7

Access Across Input Streams

// sum pairs of input stream
// in Brook
kernel sumpair(floats a[i:-1,0], out

floats b) {
b = a + a[-1]

}
// note, new version of Brook requires
// stencil for a[-1,0]

// in KernelC – requires comm
kernel sumpair(istream a, ostream b){
loopstream(a) {
a >> x ;
y = commucperm(…) ;
// ugliness to deal with edge case
z = x+y ;
b << z ;

}
}

// StreamIt – uses peek
Class Foo extends Filter {
…
void work(){
x = input.peek(1)+input.pop() ;
output.push(x) ;

}
}

Copyright (C) by William J. Dally, All Rights ReservedEE482C, L9, May 2, 2002 8

Access To Global Data
e.g., filter coefficients

// in KernelC – need to load in via
// a stream
kernel lookup(istream table, istream

a, ostream b){
i = 0 ;
loopstream(table) {
table >> tbl[i++] ;

}
loopstream(a) {
a >> x ;
y = tbl[x] ;
b << y ;

}
}

// in Brook
kernel lookup(ints a, int table[TSIZE],

out ints b) {
b = table[a] ;

}

// but aren’t we making random memory
// references here?

Copyright (C) by William J. Dally, All Rights ReservedEE482C, L9, May 2, 2002 9

What are the Issues?
Part II - Streams

• How are streams connecting kernels described
– How is a stream declared?
– How is one stream derived from another?
– How are common communication patterns implemented?
– Are streams derived by copying or by reference?

Copyright (C) by William J. Dally, All Rights ReservedEE482C, L9, May 2, 2002 10

Stream Declarations and Derivations

// StreamC
// a stream of 1024 “foo” records
im_stream x = newStreamData<foo>(1024) ;

// every third record from stream x
y = x(0,1024, im_fixed, im_acc_stride, 3) ;
// these are “references”
//if you change y, x is changed as well

// Brook
typedef stream foo foos ;
foos x,y;
streamSetSize(x,1024);
streamstride(y,x,1,3); // y is “references”

// StreamIt
// streams never explicitly declared

Copyright (C) by William J. Dally, All Rights ReservedEE482C, L9, May 2, 2002 11

Communication Patterns

// StreamC
kernel1(a, b, c) ;
kernel2(b, d) ;
kernel3(c, e) ;
kernel4(d, e, f) ;

• StreamIt only allows the following constructors
– Pipeline – one kernel follows another and consumes its output
– SplitJoin – input stream is split and divided across kernels then joined

• Split may be ‘duplicate’ or ‘roundRobin’

– FeedbackLoop – output ‘split’ passed through a kernel, and then ‘joined’ with
input.

Copyright (C) by William J. Dally, All Rights ReservedEE482C, L9, May 2, 2002 12

Brook

• What is the purpose of Brook?
– Machine independent

• No clusterisms

– Suitable for parallel implementation
• No serializations
• No retained state
• Reduction variables – can be converted to a ‘tree’

– Support multidimensional arrays
• Template declaration in argument list

– Support irregular data structures (e.g., graphs)
• Template declaration in argument list – details remain to be

determined

Copyright (C) by William J. Dally, All Rights ReservedEE482C, L9, May 2, 2002 13

Simple Example

typedef stream float floats ;
floats x,y,z ;
streamSetLength(x,1024) ; streamSetLength(y,1024);
streamSetLength(z,1024) ;

kernel double(floats a, out floats b){
b = 2*a ;

}

void main() {
// stuff to initialize x
double(x, y) ;
double(y, z) ;

}

Copyright (C) by William J. Dally, All Rights ReservedEE482C, L9, May 2, 2002 14

2-D Array Access

typedef stream float floats ;
floats x[1024] ;
streamShape(x,2,32,32) ;

kernel neighborAvg(floats a[x:-1:1], out floats b){
int i,j ;
float s = 0 ;
b = 0.25*(a[-1,0]+a[1,0]+a[0,-1]+a[0,1]) ;

}

Copyright (C) by William J. Dally, All Rights ReservedEE482C, L9, May 2, 2002 15

2-D Array Access
(new version of Brook)

typedef stream float floats ;
typedef stream float floats2[3][3];
floats x;
floats2 y;
streamShape(x,2,32,32) ;
streamStencil(y, x, STREAM_STENCIL_CLAMP, 2, -1, 1, -1, 1);

kernel void neighborAvg(floats2 a, out floats b){
b = 0.25*(a[0][1]+a[2][1]+a[1][0]+a[1][2]) ;

}

Copyright (C) by William J. Dally, All Rights ReservedEE482C, L9, May 2, 2002 16

Reduction

typedef stream float floats ;
floats x, y ;
setStreamLength(x,1024) ; setStreamLength(y,1024) ;

kernel void dotProduct(floats a, floats b, reduce float p){
p += a * b ;

}

Copyright (C) by William J. Dally, All Rights ReservedEE482C, L9, May 2, 2002 17

Irregular Structures
How would you code this in a stream language?

struct node {
float value ;
float old_value ;
int nr_neighbors ;
struct node *neighbors ;

}

For each node, *node
node->old_value = node->value ;

For each node, *node
node->value = 0 ;
for each neighbor, *neighbor

node->value += neighbor->old_value ;

Copyright (C) by William J. Dally, All Rights ReservedEE482C, L9, May 2, 2002 18

Irregular Structures
One Possibility

struct node {
float value ;
float old_value ;
int nr_neighbors ;
int start_neighbor ;

}

typedef stream node nodes ;
typedef stream int ints ;

nodes nds[NR_NODES] ;
ints indices[NR_NEIGHBORS] ;
Nodes neighbors[NR_NEIGHBORS] ;

kernel neighborIndices(nodes nds, outm ints indices) {
int j ;
for(j = 0 ; j< nds.nr_neighbors; j++)
push(nds.start_neighbor + j) ; // multiple outm args?

}

streamIndex(neighbors, nodes, indices); // want just the old_value field

kernel sumNeighbors(nodes nds, neighbors nds, out nodes new nds) {
// need to consume the streams at different rates

}

Copyright (C) by William J. Dally, All Rights ReservedEE482C, L9, May 2, 2002 19

Irregular Structures
A Cleaner Approach

struct node {
float value ;
float old_value ;
int nr_neighbors ;
int start_neighbor ;

}

typedef stream node nodes ;
typedef stream int ints ;

nodes nds[NR_NODES] ;
ints indices[NR_NEIGHBORS] ;

kernel sumNeighbors(nodes nds[indices[nds.start_neighbor..nds.start_neighbor+MAX_NEIGHBORS]),
{

int j ;
float sum = 0 ;
for(j = 0 ; j< nds.nr_neighbors; j++)
sum += nds[indices[nds.start_neighbor+j]].old_value ;

nds.value = sum ;
}

Copyright (C) by William J. Dally, All Rights ReservedEE482C, L9, May 2, 2002 20

Stream Languages
Summary

• Make communication explicit
– By describing streams and kernels

• Narrow line between
– Too difficult to express programs with non-trivial communication
– Too easy to write inefficient programs

• With unnecessary and unexposed communication

• Communication is declared
– As input, output, and reduction streams
– Restricting direction (no input/output) simplifies compilation

• Handling increasingly complex structures
– Linear streams only – no access to other elements/data
– Linear streams with access to neighbors (peek)
– Arbitrary number of dimensions with access to “stencil”
– Arbitrary structure with access to “template”

Copyright (C) by William J. Dally, All Rights ReservedEE482C, L9, May 2, 2002 21

Stream Languages
Summary (cont)

• Kernel issues
– Functional kernels make it easier for the compiler to exploit

parallelism
• Persistant state made explicit by “reduction variables”
• Need an “inm” input type to allow different consumption rates of input

streams
• Sometimes want an “outer product” composition of input streams

– Explicit kernels expose communication
– Kernels should allow ‘arbitrary’ accesses if declared

• Nothing disallowed but no “hidden” global references

• Stream issues
– Allow arbitrary connection of kernels
– Often use “indexing kernels”
– Reference or copy semantics

